DE89 004505

CHARACTERIZATION OF NATURAL FRACTURES IN MESAVERDE CORE FROM THE MULTIWELL EXPERIMENT BY S. J. FINLEY AND J. C. LORENZ

September 1988

ABSTRACT

Natural fractures dominate the permeability of tight sandstone reservoirs in the Mesaverde Formation of the Piceance Creek Basin, north-Roughly 1900 natural fractures, detected in 4200 ft of western Colorado. Mesaverde core from the U.S. Department of Energy's Multiwell Experiment (MWX), have been differentiated into 10 different fracture types on the basis of fracture morphology, inclination, the presence of slickensides, the presence of dickite mineralization and/or host lithology. Approximately 75 percent of the MWX core fractures are dewatering planes in mudstone and are probably unimportant to reservoir permeability. The remaining 25 percent of the MWX core fractures include 275 mostly calcitemineralized, vertical extension fractures, 61 irregular, dickitemineralized extension fractures, 27 mostly calcite-mineralized, horizontal extension fractures, and 90 slickensided, occasionally mineralized shear These extension and shear fractures are all potentially fractures. important to reservoir permeability and consequently productivity.

DATABASE AVAILABILITY

The MWX fracture database is available as an ASCII file on a 5-1/4 inch formatted floppy disk. If interested contact Sharon J. Finley, John C. Lorenz, or Norman R. Warpinski at: Sandia National Laboratories, Division 6253, P.O. Box 5800, Albuquerque, NM 87185.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ACKNOWLEDGMENTS

We would like to acknowledge the initial descriptions of natural fractures in MWX core performed by J. A. Clark, D. D. Madsen, and L. W. Teufel. We especially thank N. R. Warpinski, who assisted in the computer aspects of the data base and F. E. Hensley, who assisted by washing, moving, and sorting roughly 70,000 lbs. of rock. Thanks also go to D. A. Northrop, J. T. Neal, and N. R. Warpinski for their helpful reviews of this report.

The Multiwell Experiment is part of the U.S. Department of Energy's Western Gas Sands Subprogram which is managed by the Morgantown Energy Technology Center, Morgantown, WV.

CONTENTS

		Page
A.	INTRODUCTION	1
B.	METHODOLOGY	5
	Extension Fractures	8
	Shear Fractures	9
c.	DISCUSSION OF FRACTURE TYPES	10
	1. Extension Fractures	10
	a. Extension Fractures (Type 1 and Type S)	10
	b. "Frac Blast" Fractures (Type 8)	35
	c. Horizontal Fractures (Type 7)	40
	d. Other Extension Fractures (Type C and Type N)	49
	2. Shear Fractures	49
	a. Low-Angle Shear Fractures in Sandstone or Siltstone (Type 4)	53
	b. High-Angle to Near-Vertical Shear Fractures in Sandstone or Siltstone (Type 5)	58
	c. Shear Fractures within Carbonaceous Mudstone Laminations in Sandstone or Siltstone (Type 2)	60
	d. Dewatering Fractures in Mudstone (Type 3)	65
	e. Shears in Mudstones (Type 6)	79
D.	SUMMARY AND CONCLUSIONS	81
	REFERENCES	89
	APPENDIX A	Al

A. INTRODUCTION

The Mesaverde Formation is fractured throughout the section at the Department of Energy's Multiwell Experiment (MWX) site. Well tests indicate that the natural fractures dominate permeability and, therefore, are the primary mechanism of gas production in these low-permeability sandstones. About 4200 ft of mostly 4-inch-diameter core was cut from three closely spaced wells at the MWX site. A comprehensive database of core fractures is presented in this report, and all natural fractures identified in the MWX core are described and discussed.

The three MWX wells are located within the Rulison Field (natural gas) near Rifle, Colorado. Figure 1 shows the well spacings, and the cored intervals are listed in Table 1. Approximately 30 percent of the core was oriented using standard multishot techniques. In addition to the characterization of core fractures presented in this report, a detailed sedimentologic description of the core was made (Lorenz, 1987). Also, numerous routine and special core analyses were conducted on the MWX core by several commercial and government laboratories (Sattler, 1984).

The top of the Cretaceous Mesaverde Formation is at a depth of roughly 4000 ft and the Mesaverde section is approximately 4300 ft thick at the MWX site. The Mesaverde is comprised of rocks from five different depositional environments as illustrated in Figure 2. In descending stratigraphic order, these environments include the upper, paralic zone (4000 to 4400 ft), characterized by distributary and estuary sandstones; the fluvial zone (4400 to 6000 ft), characterized by wide meanderbelt sandstones; the coastal zone or upper delta plain (6000 to 6600 ft), characterized by lenticular distributary channel sandstones; the paludal zone or lower delta plain (6600 to 7450 ft), characterized by lenticular distributary channel sandstones (Lorenz, 1987).

Figure 1. Relative Well Spacings at Surface and at 7300 ft (the deepest survey in all three wells).

Table 1

Well	Interval Cored (ft)	Footage Cored (ft)	Footage Recovered (ft)
MWX-1	4170-6836	2666	2666
	7870-7960	90	90
MWX-2	4870-4956	86	84
	*5485-5500	15	15
	*5551-5581	30	26
	5700-5880	180	177
	6390-6568	178	178
	7080-7388	308	305
	7817-7907	90	90
	8100-8141	41	41
MWX-3	4886-4928	42	42
	5690-5870	180	178
	6431-6528	97	97
	6875-6910	35	35
	7071-7160	89	89
	7536-7564	28	28
Total core footage (all wells)		4155	4141

Core Intervals in MWX Wells

*2-inch-diameter pressure core.

Figure 2. Geologic Characteristics of Mesaverde Formation Sandstones in the MWX Wells (J. C. Lorenz, 1987)

The MWX fracture da'tabase, discussed in this paper and presented in Appendix A, is comprised of all the naturally occurring fractures identified in the MWX core plus two types of drilling- and/or coringinduced fractures. Roughly 110 drilling-induced petal fractures and 16 scribe-line fractures are included in the MWX fracture database. They are designated type P and type B, respectively, in Appendix A. These mechanically induced petal and scribe-line fractures have been discussed in detail in Lorenz and Finley (1988) and will not be discussed further in this paper. All of the natural fractures that have been identified in MWX core are either mineralized to some extent and/or slickensided.

B. METHODOLOGY

All of the available core from the three MWX wells was scrutinized for natural fractures and all fractures were classified and described in detail. Due to core sampling for various analyses prior to fracture logging, an occasional fracture may have been overlooked. However, every effort was made to minimize such omissions. D. D. Madsen prepared an informal, preliminary set of fracture notes on MWX-1 and MWX-2 core (J. A. Clark, 1983), and data from these notes were used in the MWX fracture database presented in this report if the core was unavailable for reexamination.

Each piece of core was washed and scrubbed thoroughly prior to examination for fractures. Fracture measurements were carefully made, and occasionally the core was cut to determine the relationship between individual fracture strands or fracture orientations. Most of the core had been previously slabbed for a sedimentology review, making detection of very thin fractures easier. A binocular microscope was used for the identification of fracture mineralization; however, occasionally the use of a petrographic microscope, x-ray diffractometer, or scanning electron miscroscope was necessary to confirm the presence of mineralization or determine its composition. Classifying the MWX core fractures by fracture type was a tedious and cumbersome task. Large intervals of core were

-5-

examined and reexamined several times in order to assure that the fractures were classified consistently, and that all fractures were noted.

Describing and classifying fractures in core is by no means a completely empirical process. For example, some of the fractures consist of a number of individual fracture strands. Since the relationship between fracture strands was often impossible to verify, we used arbitrary but consistent interpretations. If the strands appeared to be an echelon or closely spaced (<0.1 ft apart) and oriented the same, they were considered to be part of the same fracture. Other interpretations that affect fracture descriptions are identified later in this paper, when the fracture type affected is discussed.

The fracture database in Appendix A includes the following, where applicable, about each fracture or fracture group:

- well number
- fracture depth
- number of fractures
- fracture height
- fracture width
- fracture strike
- dip inclination
- dip direction
- slickenside bearing
- type of motion
- type and amount of mineralization
- fracture terminations
- rock type
- fracture type.

The <u>well number</u> designates the well that the core came from. The <u>fracture</u> <u>depth</u> is the depth of the top of the fracture; both core and log depths are given. The <u>number of fractures</u> indicates how many fractures fit the description given. If the number of fractures is greater than one, the database provides a general description of the fracture group, which may not fit every individual fracture within that group. Fracture height refers to the height of the fracture in the core (depth of bottom of fracture minus depth of top of fracture). In the case of a fracture group, fracture height refers to the core length of the entire group. Fracture width in the database is the maximum width of a single fracture or of the widest fracture in a group.

Fracture strike is the true strike of a fracture, oriented with respect to north using multishot orientation data or paleomagnetic techniques (Geissman, 1988). Paleomagnetic techniques were used to determine the orientation of six MWX fractured core samples, whereas roughly 1260 ft of MWX core was oriented using multishot techniques. Paleomagnetic data or multishot orientation data were used in conjunction with the core logs prepared by CER Corporation in order to accurately extend the orientation data beyond the piece of core where it was taken. (These core logs provide an invaluable record of breaks in and deviation of the principal scribe line, as well as tops of core runs and connections; all data that can be used to help determine the validity of any multishot orientation points.) Dip inclination is the angle between the plane of the fracture and a horizontal plane. Dip azimuth refers to the true down-dip azimuth as determined from oriented core data. Slickenside bearing, where available, is also a true orientation. Type of motion indicates a specific type of shear fracture or fault, either normal, reverse, or strike-slip.

<u>Type of mineralization</u> is a mineral identification of the fracture fill, and <u>fill amount</u> is described as either partial or complete. A notation is made if the mineralization is crystalline and subhedral. The presence of subhedral mineralization indicates that the crystals were partially unconfined during crystal growth. <u>Fracture terminations</u> refer to the terminations of the fracture within the core. <u>Rock type</u> refers to the principal lithology of the core hosting the fracture.

All of the fractures were categorized by an arbitrarily defined <u>fracture type</u>. Each fracture type was assigned an arbitrary number or

-7-

letter designation immediately after identification, and since different fracture types were later grouped into larger classifications, the specific types are not discussed in numerical order. Some fracture types were only recognized in very localized core intervals. Description of these localized fractures occasionally defined a new fracture type, and previously logged core intervals were then rechecked for fractures that might best fit the new type. The fracture types were defined specifically to fit the MWX core fractures. Rather than fit the data to a preconceived classification system, the data dictated the fracture types used in this database.

All fractures of a particular type have similar morphologies and other characteristics like inclination and host lithology suggesting a similar fracture origin. However, all or some of the different fracture types may be related, whereas some fractures with similar morphologies may be unrelated. Fracture origins are briefly mentioned where data is available; they will be the subject of future research and publications.

For the purpose of this paper, the different fracture types were initially categorized as either extension or shear fractures. The extension fracture types are discussed in order of their relative abundance in MWX core. The shear fractures lend themselves more readily to discussion by host lithology. Those fracture types occurring in sandstone and siltstone are discussed before those types occurring in mudstone lithologies.

Extension Fractures

- Types 1 and S: vertical, mostly calcite-mineralized fractures (275 fractures).
- Type 8: dickite-mineralized fractures imparting a "frac blast" texture to the rock (61 fractures).
- Type 7: horizontal, mostly calcite mineralized fractures (27 fractures).

- 8 -

- Type C: mineralized coal cleats (4 cleats).
- Type N: calcite-mineralized fractures within a sandstone clast encased in mudstone (2 clasts).

Shear Fractures

- Type 4: low angle shear fractures in sandstone and siltstone lithologies (4 fractures).
- Type 5: near vertical shear fractures in sandstone and siltstone lithologies (1 fracture).
- Type 2: shear fractures confined to carbonaceous mudstone laminations in sandstone and siltstone lithologies (77 fractures).
- Type 3: conical to undulating dewatering/compaction fractures in mudstone (1425 fractures).
- Type 6: planar shear fractures in mudstone lithologies (8 fractures).

The discussion section of this report includes comprehensive descriptions of the different types of MWX core fractures. These descriptions include core photographs, sketches, photomicrographs, distribution histograms, scatter plots of fracture widths, inclinations, orientations, and/or rosette diagrams of orientations.

Unless otherwise noted, all histograms of fracture frequency with respect to depth plus figures 14 and 27 consist of data from MWX-1, where approximately 2700 ft of continuous core was taken. Data from MWX-2 were used only where there was no core from MWX-1. Although they are not all obvious on the histograms due to the 250-ft bar width, the following are uncored intervals in MWX-1 and MWX-2: 4000-4170 ft (paralic); 6838-7080 ft (paludal); 7388-7817 ft (paludal and marine); 8141 to 8500 ft (marine). See Table 1 for cored intervals. If fracture data from MWX-2 or MWX-3 is

-9-

used in lieu of MWX-1 data, the fracture distribution with depth is essentially unchanged.

C. DISCUSSION OF FRACTURE TYPES

1. EXTENSION FRACTURES

The extension fractures in MWX core have been divided into five different types. Here the term extension fracture is used to refer to any fracture that has been pulled apart perpendicular to the plane of the fracture, with no evidence of shear motion. The most common type of extension fractures observed in MWX core are simply referred to as extension fractures (Type 1 and Type S). The second most commonly observed type of extension fractures, although they occur in a very localized zone, are the "frac blast" fractures (Type 8), and the third subgroup of extension fractures in MWX core are horizontal fractures (Type 7). Type C and N extension fractures occur very rarely in the MWX core and are briefly described at the end of this section.

a. Extension Fractures (Type 1 and Type S)

Roughly 275 of Type 1 and S extension fractures are identified and described in Appendix A. Figures 3, 4, 5, and 6 show photographs of typical fractures belonging to this subgroup. Type 1 fractures are vertical to subvertical, roughly planar, mostly calcite-mineralized extension fractures occurring predominantly in sandstone and siltstone lithologies. These fractures are commonly stranded or branched, and fracture strands often appear en echelon in the core. Figure 7 is an artist's conception of this typical en echelon pattern. Because observation or corroboration of the relationship of individual fracture strands is not likely in a 4-in.-diameter core, we were careful to use consistent interpretations in order to compile a meaningful database. Where fracture strands appear en echelon and essentially parallel, they are considered to be part of the same fracture. This was also the case if two

-10-

Figure 4. An En Echelon Type 1 Extension Fracture

-12-

Figure 7. Examples of En Echelon Pattern of Stranded Type 1 Fractures in Core fracture strands are the same length, parallel and <0.1 ft apart. If the strands are the same length, parallel or not, and ≥ 0.1 ft apart, they are arbitrarily counted as two individual fractures. If three or more fracture strands intersect the same piece of core such that most horizontal cross sections through the core would intersect three or more fracture strands, the fractures are collectively referred to as a fracture swarm (see Figure 8). In the observed fracture swarms, the individual fracture strands have similar widths; therefore, no single strand stands out as being the main fracture.

In the database, individual extension fractures are denoted Type 1 and swarms of these fractures are denoted Type S. Arbitrarily, the number of fractures is recorded as 3 for all fracture swarms. In general, all fractures within a fracture swarm have the same orientation and inclination. They may be stranded just like individual extension fractures. At a depth of ~5532 ft in MWX-1, there is a fracture within a fracture swarm with a strike roughly 40° different than the strike of the other fractures within the swarm; this fracture was listed separately. Figure 9 shows the distribution of Type 1 and S extension fractures with depth.

As is obvious in Figure 9, this particular subgroup of extension fractures is densely concentrated in the fluvial interval particularly between 5250 and 5750 ft in the wells. These extension fractures are nearly vertical to vertical (70° to 90°), and roughly 80 percent of those that have been oriented with respect to true north strike west-northwest. Lorenz et al. (1986) discussed the origin and significance of these westnorthwest-striking extension fractures. (Note: Orientation data for core fractures presented in this paper supersedes the preliminary orientation data presented in that paper.)

Twenty-five percent (62 fractures) of these Type 1 and S extension fractures have been oriented with respect to true north. Roughly one-third of these oriented fractures are associated with fracture swarms. The predominant west-northwest fracture strike shows up in all three rosette

-16-

Figure 8. Examples of Fracture Swarms (Type S); (a) MWX-1, 5678 ft; (b) MWX-2, 8123.3 ft

Figure 9. Frequency Distribution of Type 1 and S Fractures with Respect to Depth; Core Data from MWX-1 and MWX-2

-18-

diagrams in Figure 10. In addition to the predominant fracture strike, the core intersected fractures striking north-northwest in the marine zone (~8120 ft) and in the fluvial zone (~5440 and 5530 ft). Fractures striking northeast were also detected in core from the fluvial zone (~5505 ft). Figure 11 shows the distribution of fracture strikes with respect to depth. Data from all three MWX wells were used to generate this figure.

Although there is a good deal of scatter in the fracture orientation data due to scatter in the multishot data, the additional fracture orientations are real. The fractures striking north-northwest were either detected in the same piece of core, or in an unbroken and unrotated core run where fractures striking west-northwest were also observed. The orientation of fractures striking northeast was first determined using multishot-oriented core data and later corroborated with paleomagnetic data. In addition to the the multiple fracture strikes in the fluvial and marine zones, two extension fractures, with strikes differing by 50°, intersect each other in core at about 6196 ft in MWX-1 (Figure 12). There are no orientation data available for this piece of core or any core in close proximity to these fractures.

Close inspection of thin sections across intersections of calcitefilled fractures with distinctly different strikes has offered no clue to the relative ages of these apparently different Type 1 fracture sets. No offset is observed and, with the exception of the north-northwest marine fractures, mineralization appears similar and continuous (Figure 13). The identification of chamosite in the north-northwest marine fractures suggests this fracture set may be older than the predominant west-northwest fractures.

All of the Type 1 and S fractures are filled with some combination of calcite, quartz, chamosite, barite and/or dickite mineralization. Figure 14 shows the distribution of the three most common types of mineralization. Calcite is by far the most common mineral phase. Calcite occurs as either the only mineral phase present, or in conjunction with quartz, dickite, barite, and/or chamosite. The calcite crystals are

-19-

Figure 10. Strikes of Type 1 and Type S Fractures Plotted in Rosette Diagrams; (a) Type 1 Fractures; (b) Type S Fractures; (c) Both Type 1 and Type S Fractures

Figure 11. Distribution of Type 1 and S Fracture Strikes Plotted With Respect to Depth; Oriented Core Data From all Three MWX Wells

-21-

Figure 12. Intersecting Type 1 Fractures at 6196 ft in MWX-1

-22-

Figure 13. Photomicrograph of Intersecting Type 1 Fractures at 5532.2 ft in MWX-1; (a) Plane Light; (b) Polarized Light

Figure 14. Distribution of Different Fracture Mineralization With Respect to Depth; Core Data From MWX-1 and MWX-2

sometimes subhedral and frequently twinned (Figure 15). Quartz is the only mineral phase identified in one fracture in the paludal interval (~7122 ft) and two fractures in the marine interval (~7903 ft); however, in Type 1 and S fractures, quartz is typically found with calcite and/or dickite and frequently appears to have been the first mineral phase to precipitate. The quartz often appears as subhedral crystals nucleated on sand grains at the fracture wall (Figure 16).

Dickite apparently completely fills fractures or fills void in fractures previously mineralized with quartz and calcite. The photomicrographs in Figure 17 suggest that at this location calcite may have been partially dissolved or altered by the fluids precipitating Calcite and/or quartz sometimes occur in only microscopic dickite. quantities in the dickite-filled Type 1 fractures. Since petrographic analysis wasn't routinely done, calcite and/or quartz may have been overlooked in some of these fractures. Dickite has been identified by x-ray diffraction analysis and has only been detected in 12 of the Type 1 extension fractures between 5980 and 6400 ft in MWX-1. This particular interval was not cored in either of the other two MWX wells. The presence of dickite is used as an identifying characteristic of the subgroup of extension fractures called "frac blast" fractures (Type 8) discussed later.

The mineral chamosite only occurs in the fractures striking northnorthwest in the marine interval in MWX core. Where it occurs, chamosite lines fracture walls or completely fills fracture strands, indicating it was the first mineralization to precipitate from solution (Figure 18). Calcite and quartz are also present in these same fractures. The presence of early chamosite in north-northwest marine fractures coupled with its absence in west-northwest striking marine fractures suggests that at least in the marine interval, the north-northwest fractures are older. (There are a number of inconsistencies in the literature regarding the mineral name "chamosite." Usage of "chamosite" in this paper is based on the definition provided by Maynard (1986). He suggests using "chamosite" to refer to Fe-rich chlorites with a measurable 14 angstrom basal spacing.)

-25-

Figure 15. Photomicrographs of Subhedral and Twinned Calcite in a Type 1 Fracture 6008.6 ft in MWX-1; (a) Plane Light; (b) Polarized Light

-26-

1mm

1mm

Figure 16. Photomicrographs of Quartz Nucleated on Sand Grains Along Fracture Walls;
(a) SEM Photo of Subhedral Quartz in Fracture at ~7122 ft in MWX-2;
(b) Photo of Thinsection of Mostly Calcite Filled Fracture at 5504.3 ft in MWX-1 (polarized light)

-27-

Figure 17. Photomicrographs of Calcite and Dickite in Type 1 Fracture at 6047.2 ft in MWX-1; (a) Plane Light; (b) Polarized Light

Figure 18. Photomicrographs of Chamosite Lining Fracture Walls at 8123.3 ft in MWX-2; (a) Plane Light; (b) Polarized Light

Barite is much less commonly observed than calcite, quartz, or dickite. It has only been identified in two Type 1 fractures and only in very minimal amounts in any one fracture. Due to its paucity in fractures where it has been identified and typically microscopic crystalline habitat, the identification of barite requires x-ray diffraction, petrographic analysis, or scanning electron microscope work (Figure 19). These analyses were not conducted on every fracture or along the entire length of any one fracture, so the presence of barite may have frequently been overlooked. To date, the age relationship between barite and other mineralization is unclear.

Measured fracture width of these largely vertical and mostly calcitefilled extension fractures ranges from roughly a centimeter to a small fraction of a millimeter. Figure 20 shows the distribution of maximum fracture width with respect to depth. A few of the fractures were split open in the core barrel and occasionally only half of the fracture was In most such cases, the fracture mineralization appears retrieved. subhedral with well formed crystal faces that must have formed in an at least partially unconfined environment. If immeasurable, the width of fractures with subhedral mineralization was arbitrarily listed as 1 cm, which is 1 mm less than the maximum fracture width measured in the core. As shown in Figure 20 the wider Type 1 extension fractures are concentrated between 6000 and 6100 ft, although they also occur sporadically throughout the Mesaverde section. A listing of wider Type 1 extension fractures with subhedral mineralization is given in Table 2. These fractures are most likely open to some extent in the subsurface.

Over 95% of these Type 1 and S extension fractures are found in sandstone and siltstone lithologies in the core (Figure 21). Fracture terminations observed in core are often at lithologic (mostly mudstone) contacts, but also occur within the fractured lithology. Due to the en echelon morphology of these fractures, it's often difficult, and occasionally impossible, to determine if absolute fracture terminations are

Figure 19. Scanning Electron Micrograph of Barite in Type 1 Fracture at 6047.5 ft in MWX-1

Figure 20. Distribution of Type 1 and S Fracture Widths With Respect to Depth; Core Data From all Three MWX Wells

- 32 -

Table 2

Well	Depth of Top of Fracture (ft)	Fracture Height in Core (ft)	Maximum Fracture Width in Core (mm)
MWX-1	4877.3	1.0	10.0*
	4904.6	1.6	1.4
	4908.0	1.0	10.0
	5016.4	3.5	10.0*
	5730.4	6.0	3.6
	5863.9	1.8	7.0
	5866.6	4.2	7.0
	5890.4	1.0	4.0
	6007.7	2.8	3.8
	6033.0	1.1	3.0
	6075.7	1.4	11.0
	6249.2	1.3	10.0*
MWX - 2	5567.0	0.6	10.0*
	5568.0	4.0	10.0*
	5743.3	3.5	7.0
	5750.4	1.8	1.2
	5761.5	3.5	8.0
	5779.6	2.7	2.0
	5793.6	2.1	1.2
	5826.2	2.7	1.5
	7122.2	4.0	10.0*
	7181.1	1.7	1.0
	8123.3	0.2	4.0
	8124.2	0.5	10.0*
MWX-3	5809.5	0.3	10.0*

*Separated fracture, width estimated at 10.0 mm.

Figure 21. Frequency of Type 1 and Type S Fractures in Three Different Rock Types; Core Data From all Three MWX Wells

observed in the 4-in.-diameter core or if terminations of only a segment of a much larger fracture are observed in the core. Abrupt terminations of these Type 1 extension fractures at mudstone contacts (as shown in Figure 22), coupled with the very rare occurrence of these fractures in mudstone lithologies, suggest that the terminations at mudstone contacts are absolute fracture terminations.

b. "Frac Blast" Fractures (Type 8)

Type 8 or "frac blast" fractures are the second most common subgroup of extension fractures detected in MWX core. Figures 23 and 24 show photographs of typical "frac blast" or Type 8 extension fractures. They appear to have imparted an exploded rock texture to the core, hence the informal name "frac blast." The fracture planes range from undulatory to planar and frequently are coincident with syndepositional sedimentary structures or bedding planes. Measured fracture dips range from horizontal to vertical, and fracture mineralization always includes dickite. In some intervals the Type 8 fractures are parallel to each other, and in other intervals, they are mutually perpendicular to each other. There are no oriented core data available for the interval of core where these "frac blast" fractures were detected.

About 61 "frac blast" fractures were detected; all between 6080 ft and 6315 ft in MWX-1. Figure 25 shows the distribution of these Type 8 extension fractures with depth. The upper coastal interval where Type 8 fractures were detected in MWX-1 was not cored in either of the other two MWX wells. The "frac blast" fractures are highly concentrated between approximately 6129 and 6200 ft, and they generally occur in clusters within core intervals 1 to 2 ft in length. It is impossible to determine the relationship of numerous, often undulatory fracture strands, varying widely in length, width, strike, and dip within these clusters. Consequently, an arbitrary maximum fracture number of 6 was assigned when six or more fractures or fracture strands were counted. Forty-eight or 80 percent of the "frac blast" fractures occur in these high-density clusters.

-35-

Figure 22. Photographs of Type 1 Fracture Terminations at Mudstone Contacts; (a) ~6100.5 ft in MWX-1; (b) ~6101 ft in MWX-1; (c) ~5833 ft in MWX-2; (d) ~5661 ft in MWX-1

-36-

Figure 23. Examples of Type 8 "Frac Blast" Fractures in Core; Both Photos From ~6135 ft in MWX-1

Figure 24. Examples of Type 8 "Frac Blast" Fractures in Core; (a) ~6189 ft in MWX-1; (b) ~6198 ft in MWX-1

Figure 25. Frequency Distribution of Type 8 Fractures With Respect to Depth; Core Data From MWX-1 and MWX-2

-39-

Dickite is the predominant mineralization of the "frac blast" fractures. Dickite has also been detected in other types of fractures within the "frac blast" interval and slightly beyond it. Calcite is also commonly present in Type 8 fractures, and lesser amounts of quartz and barite have been identified microscopically or in x-ray. Figure 26 shows photomicrographs of a Type 8 fracture with quartz and calcite mineralization as well as dickite.

The maximum fracture widths of individual "frac blast" fractures are plotted with respect to depth in Figure 27. For "frac blast" clusters, only the maximum width of the widest fracture within the cluster is plotted in Figure 27. The measured fracture width ranges from a small fraction of a millimeter to 6 millimeters in the core. Blue epoxy impregnation of thin sections and SEM analysis reveal the presence of microporosity within dickite mineralization (Figure 28).

Type 8 fractures occur most commonly in muddy siltstone or interlaminated and mixed mudstone, siltstone, and sandstone. In contrast to Type 1 extension fractures, they are infrequently observed in clean sandstones and siltstones. However, clean sandstones and siltstones are less common in the "frac blast" interval than in some other intervals of the core. (Note the gamma log response in the "frac blast" interval marked in Figure 29.) The "frac blast" clusters and individual fractures terminate within the fractured lithology and at mudstone contacts in the core. Since these fractures occur frequently in mudstone lithologies, the occasional termination at a mudstone contact may be coincidental, or represent only an interruption in the fracturing that continues beyond the core diameter.

c. Horizontal Fractures (Type 7)

This subgroup of extension fractures at MWX is comprised of 27 horizontal to subhorizontal, generally planar, mostly calcite-mineralized fractures. Fractures in this subgroup of extension fractures are indistinguishable from horizontal to subhorizontal "frac blast" fractures

-40-

Figure 26. Photomicrographs of Type 8 Fracture Mineralization; (a) Calcite and Quartz in Fracture at 6147.5 ft in MWX-1 (Polarized Light); (b) Dickite in Fracture at 6147.5 ft in MWX-1 (Plane Light);

Figure 27. Distribution of Type 8 Fracture Widths With Respect to Depth; Core Data From MWX-1 and MWX-2

Figure 28. Photomicrographs of Dickite Mineralization (~6047 ft, MWX-1); (a) Thinsection of Dickite, Micro-Porosity is Darker in Color; (b) SEM Photo of Dickite

COASTAL ZONE

Figure 29. Gamma Log Correlations Through the Coastal Zone at the MWX Site

based on fracture morphology alone. Therefore, the presence or absence of dickite mineralization was used as a criterion to distinguish between the two groups of fractures. There were no horizontal to subhorizontal extension fractures in the "frac blast" interval (~6080 to 6315 ft) without dickite mineralization; therefore, none of the horizontal fractures in this interval were included in the Type 7 subgroup. The frequency distribution of the Type 7 subgroup (shown in Figure 30) appears to show concentrations in the lower fluvial interval and in the lower coastal/upper paludal interval.

The Type 7 subgroup is comprised of fractures that range from horizontal to 40° in dip (Figure 31). Fracture planes vary from planar to irregular and frequently are coincident with bedding planes and more horizontal reservoir heterogeneities. Although Type 7 fractures occur in all lithologies, 85 percent of those detected are in the MWX sandstones and siltstones.

Like all extension fractures previously discussed, Type 7 fractures often appear stranded or branched (Figure 32). As is the case with any stranded fracture, the relationship between individual fracture strands is often not verifiable in core. If the individual fracture strands were spaced <0.1 ft apart or within 0.2 ft of a main fracture strand, they were arbitrarily all considered part of the same fracture. Most often one strand appears to be the main fracture strand as it is wider and more continuous through the core. There are no orientation data available for any Type 7 fractures. They either did not occur in oriented core, or were too close to horizontal, or too irregular to make reasonably accurate strike and dip measurements.

As stated earlier, by definition none of the Type 7 fractures were mineralized with dickite. Fracture mineralization includes calcite, quartz, and barite. The most common mineralization is calcite or a combination of calcite and quartz. Quartz alone was detected in one Type 7 fracture in the vicinity of 5567 ft in MWX-2. Only two Type 7 fractures

-45-

Figure 30. Frequency Distribution of Type 7 Fractures With Respect to Depth; Core Data From MWX-1 and MWX-2

Figure 31. Distribution of Type 7 Fracture Dip Angles With Respect to Depth; Core Data From all Three MWX Wells

-47-

Figure 32. Stranded Type 7 Fractures; (a) 5530.4 ft, MWX-1; (b) 6661.9 ft, MWX-1

with barite mineralization were identified; they are both in the coastal interval around 6396 ft in MWX-1. Occasionally mineralization appears subhedral suggesting the fractures are partially open in situ. Measurable fracture width varies from a fraction of a millimeter to 5 millimeters (Figure 33).

d. Other Extension Fractures (Type C and Type N)

In addition to the three main subgroups of extension fractures, there are two types that occur rarely and may or may not be related to the other subgroups. Type C extension fractures are mineralized coal cleats. There are roughly four small (≤ 0.2 ft in length), vertical, calcite-mineralized coal cleats at 6897.4 ft in MWX-3. They all strike N85W, parallel to most of the oriented Type 1 extension fractures.

Type N or "contained fractures" are defined as extension fractures contained in a sandstone or siltstone clast encased in mudstone. In the MWX core there are two occurrences of these Type N fractures. The clasts are small enough to be recognized as clasts in the 4-in. core. At 5388.9 ft in MWX-1, there are roughly 20 horizontal to subhorizontal fractures in a sandstone clast (approximately 0.3 ft by 0.5 ft in core). In thin section, these calcite-mineralized fractures appear to extend slightly into the encasing mudstone lithology (Figure 34). This suggests that the fracturing occurred after the sandstone clast was in place and probably after the mudstone was lithified. What appears to be a smaller sandstone clast (approximately 0.1 ft by 0.2 ft in core) with four horizontal calcite-filled fractures was intersected at 5693.8 ft in MWX-1 (Figure 35).

2. SHEAR FRACTURES

Shear fractures involve movement parallel to the fracture plane, and the fracture walls generally exhibit detectable displacement. At MWX this displacement is in the form of slickensides (friction grooves). The shear fractures in the MWX core have been divided up into five different types.

-49-

Figure 33. Distribution of Type 7 Fracture Widths With Respect to Depth; Core Data From all Three MWX Wells

Figure 34. Photomicrographs of Calcite Fractures in a Sandstone Clast Extending into the Encasing Mudstone (5389 ft, MWX-1, polarized light)

Figure 35. A Fractured Sandstone Clast Encased in Mudstone, Type N; (5693.8 ft, MWX-1) Some of these fracture types are distinguished by their host lithology. The shear fractures associated with sandstone and siltstone lithologies include Types 4 and 5. Type 2 fractures are shear fractures confined to carbonaceous mudstone laminations in sandstones and siltstones. Types 3 and 6 fractures are found only in mudstone.

a. Low-Angle Shear Fractures in Sandstone or Siltstone (Type 4)

All low-angle (<50°), slickensided fractures in MWX sandstones and siltstones are included in the Type 4 subgroup. Figure 36 shows photographs of Type 4 fractures detected at MWX. All four of the Type 4 fractures were identified at depths in MWX-1 that were not cored in either of the other two MWX wells. Their distribution with depth is shown in Figure 37. Fracture planes range from irregular to planar and from horizontal to 40° in dip.

The fractures included in this group are mineralized with calcite, quartz, and/or dickite, and mineralization is commonly subhedral in the form of slickencrysts. (Slickencrysts are defined by P. L. Hancock (1985) as mineral fibers or crystals aligned at some small angle to the fracture wall (Figure 38).) Calcite is the predominant mineralization. Quartz and dickite were only detected on one of the four Type 4 fracture planes, where a trace of quartz and an appreciable quantity of dickite showed up in an xray of the fracture mineralization at 6712.4 ft in MWX-1. Measured fracture width data is not available for these fractures, as all Type 4 fractures separated in the core barrel. Mineralization is a couple of millimeters thick in places, and the presence of subhedral mineralization suggests that in places the fractures may be open at depth.

Slickensides extend across the entire exposed Type 4 fracture plane, and except in one location, the fracture planes extend across the entire core break. At 6712.4 ft the fracture appears to terminate abruptly in one area within the core (Figure 39).

-53-

Figure 36. Type 4 Fractures in Core; (a) 5474 ft and 5475 ft, MWX-1; (b) 6662.8 ft, MWX-1

Figure 37. Frequency Distribution of Type 4 Fractures With Respect to Depth; Core Data From MWX-1 and MWX-2

Figure 38. Calcite Slickencrysts on a Type 4 Fracture, 5474 ft, MWX-1

Figure 39. Type 4 Fracture Terminating Within Core Diameter, 6712.4 ft, MWX-1

With the exception of a fracture at 6662.7 ft, these fractures occur in predominantly fine-grained sandstone. At 6662.7 ft, the host rock is mixed siltstone, fine sandstone, and mudstone, and in the immediate vicinity of the fracture, the rock is predominantly muddy siltstone.

Orientation data is available for three of the four Type 4 fractures. The two Type 4 shear fractures in the fluvial interval look like low-angle thrust faults. Both fractures dip roughly 15° and are relatively planar. Slickensides and slickencrysts suggest that the upper plate at 5474.0 ft and at 5475.0 ft was moved up in the direction of S50W and N60E, respectively, as shown in Figure 40. Paleomagnetic data was used to orient the fracture at 6712.4 ft. The motion on this fracture appears to be strikeslip, and the slickenside azimuth is roughly N70W. There are no orientation data for the fracture at 6662.7 ft; however, the relative motion on this fracture also appears to be strike-slip.

 b. High-Angle to Near-Vertical Shear Fractures in Sandstone or Siltstone (Type 5)

Only one fracture in the MWX core fits this category of shear fractures. This unique Type 5 fracture dips roughly 80°. Its undulating fracture walls are lined with carbonaceous mudstone as well as patches of subhedral quartz and calcite. Slickensides also occur in patches and indicate strike-slip motion.

This fracture occurs at 4909.1 ft in MWX-1. It probably intersects or may be part of the Type 1 extension fracture at 4908.0 ft. The 0.1 ft of core that contains both the top of the Type 5 fracture and the bottom of the Type 1 fracture has been removed for analysis and is not available for inspection. Both the presence of carbonaceous mudstone and the undulatory nature of this Type 5 fracture suggest this fracture is coincident with a sedimentary feature.

Figure 40. Sketch Showing Configuration of Type 4 Fractures Intersecting MWX-1 in the Fluvial Section c. Shear Fractures Within Carbonaceous Mudstone Laminations in Sandstone or Siltstone (Type 2)

Type 2 fractures are defined as shear fractures that are confined to carbonaceous mudstone laminations in sandstones and siltstones. The strike and dip of these fracture planes is probably controlled by bedding. Figure 41 shows photographs of typical Type 2 fractures in MWX core. The thickness of the host mudstone laminations varies from approximately 1 mm to 2 cm. Slickensides commonly occur in patches, locally interspersed with patches of mineralization. Figure 42 shows the frequency distribution of these shear fractures with depth. All of these fractures separated in the core barrel, so no fracture width data is available. A total of 77 Type 2 fractures were identified in the MWX core from all three wells. Fracture planes range from very planar to very irregular and from horizontal to 50° in dip (Figure 43).

Mineralization was detected on 22 (30%) of the Type 2 fractures. The distribution of these mineralized fractures with depth is shown in Figure 44. Since mineralization is patchy and erratically distributed on the fracture planes, many of the apparently unmineralized Type 2 fractures may be partially mineralized beyond the core diameter. Mineralization is also occasionally microscopic. For example, calcite mineralization was only detected on the fracture at 6523.5 ft in MWX-2 when a microscopic patch of calcite was fortuitously included in a thin section across the fracture plane.

All ten of the mineralized Type 2 fractures in the fluvial interval are partially mineralized with macroscopic calcite that is often subhedral. At 5530.9 ft in MWX-1, sample preparation for fluid inclusion analyses revealed the presence of microscopic quartz crystals, interspersed with the calcite. In the coastal and paludal intervals, calcite is the most commonly observed mineralization on the ten mineralized Type 2 fractures; however, dickite and barite have also been detected. The dickite and

Figure 41. Type 2 Fractures in Core; (a) 7843.9 ft, MWX-2; (b) 6523.5 ft, MWX-2; (c) 5528 ft, MWX-1; (d) 7838.6 ft, MWX-2

Figure 42. Frequency Distribution of Type 2 Fractures With Respect to Depth; Core Data From MWX-1 and MWX-2

-62-

Figure 43. Distribution of Type 2 Fracture Dip Angle With Respect to Depth; Core Data From all Three MWX Wells

-63-

Figure 44. Frequency Distribution of Mineralized Type 2 Fractures With Respect to Depth; Core Data From MWX-1 and MWX-2
barite are confined to fractures from 6189 to 6197 ft in MWX-1. Patches of subhedral quartz crystals were identified on both of the mineralized Type 2 fractures occurring in marine core.

Occasionally mineral crystals on the Type 2 fractures are aligned as slickencrysts; however, more often the crystals are not aligned and occur in depressions on the fracture walls that are devoid of slickensides. Slickensides on these Type 2 fractures commonly occur in small (\leq 3 cm in diameter) patches, but occasionally cover the entire fracture plane exposed in the core. Rarely, slickensides with two distinctly different bearings have been observed on the same fracture plane.

A total of 36 of these fractures have been oriented with respect to true north. Figures 45, 46, and 47 show the distribution of the fracture strikes, dip azimuths, and slickenside bearings with respect to depth. Since we've assumed that strike and dip azimuth are controlled by bedding, only slickenside bearing would be indicative of stress directions. (The angle between slickenside bearing and dip direction ranges from 0° to 80°.) The slickenside bearings are plotted in a rosette diagram in Figure 48 and show a possible preferred orientation. Relative motion along these fractures is indeterminate for all but two of them: at 5527.8 and 5530.9 ft in MWX-1, slickencrysts imply thrust motion.

One possible explanation for the Type 2 fractures is that they formed along pre-existing bedding planes as minor lateral adjustments within the sandstones, during the different uplift and subsidence stages that the formation was subjected to. This would explain the apparently random dip/azimuths and the nominally aligned slickensides.

d. Dewatering Fractures in Mudstone (Type 3)

Type 3 fractures in mudstones are randomly oriented, undulating, polished planes with curvilinear slickensides. Opposing fracture walls fit together so tightly that most of these fractures were undetectable until after the core had dried. Others were opened during the coring and handling process. Figures 49 and 50 show photographs of typical Type 3

-65-

Figure 45. Distribution of Type 2 Fracture Strikes With Respect to Depth; Oriented Core Data From all Three MWX Wells

Figure 46. Distribution of Type 2 Dip Azimuths With Respect to Depth; Oriented Core Data From all Three MWX Wells

-67-

Figure 47. Distribution of Type 2 Slickenside Bearings With Respect to Depth; Oriented Core Data From all Three MWX Wells

SLICKENSIDE BEARING OF TYPE 2 FRACTURES n=36

N

Figure 48. Slickenside Bearings of Type 2 Fractures Plotted in a Rosette Diagram; Oriented Core Data From all Three MWX Wells

Figure 49. Type 3 Dewatering Fractures; (a) 5737.5 ft MWX-1; (b) 4265.9 ft, MWX-1

Figure 50. Type 3 Dewatering Fractures; (a) 6402 ft, MWX-3; (b) Mineralized Type 3, 6127 ft, MWX-1

fractures. Approximately 1425 Type 3 fractures were identified in the core from the three MWX wells.

The dried MWX mudstone core is incompetent and broken in the intervals where these Type 3 fractures are abundant, making counting and/or describing individual fractures difficult. Except where oriented and where they occurred separately, these fractures were described in groups in Appendix A. A reasonable estimate of the number of fracture planes present was determined by reconstruction of the core from available fragments. Descriptions given for the fracture groups are general descriptions of the entire group. Figure 51 shows the frequency distribution of the Type 3 fractures with depth. Roughly 97 percent of these fractures occur in mudstones in the fluvial and coastal intervals.

Only nine of these fractures are mineralized. Figure 52 shows the distribution of the mineralized Type 3 fractures with respect to depth. Patches of subhedral quartz crystals were detected on one Type 3 fracture at 7913.0 ft in MWX-1, and calcite lines slickenside grooves on a fracture at 5795.5 ft in MWX-3. The seven other mineralized Type 3 fractures all occur roughly between 6125 and 6245 ft in MWX-1. Mineralization on these fractures includes calcite, dickite, and barite. Calcite slickencrysts occur in patches on 2 of these fractures at roughly 6127 ft in MWX-1.

Due to the incompetent condition of the core where these fractures occur, fracture orientations were difficult to measure. In general, Type 3 fractures range from 0° to 70° in dip, but most dip between 20° and 50°. Slickenside bearings are generally parallel to dip direction, and due to the undulating and sometimes conical curvature of the fracture planes, slickensides frequently converge and/or diverge on individual planes. Strike, dip azimuth, and slickenside bearings all appear to be randomly oriented with respect to true north.

Seventy individual Type 3 fractures were oriented with respect to true north between 5690 and 5820 ft in MWX-3. Figures 53, 54, 55, and 56 show the distribution of dip angle, dip direction, strike, and slickenside

-72-

Figure 51. Frequency Distribution of Type 3 Fractures With Respect to Depth; Core Data From MWX-1 and MWX-2

Figure 52. Frequency Distribution of Mineralized Type 3 Fractures With Respect to Depth; Core Data From MWX-1 and MWX-2

- 74 -

Figure 53. Distribution of Type 3 Fracture Dip Angles With Respect to Depth; Core Data From MWX-3

Figure 54. Distribution of Type 3 Fracture Dip Azimuths With Respect to Depth; Oriented Core Data From MWX-3

Figure 55. Distribution of Type 3 Fracture Strikes With Respect to Depth; Oriented Core Data From MWX-3

-77-

Figure 56. Distribution of Type 3 Fracture Slickenside Bearings With Respect to Depth; Oriented Core Data From MWX-3

bearing with respect to depth. The distributions shown in Figures 53 through 56 are believed to be typical of all Type 3 fractures in MWX core. Every Type 3 fracture identified in this 130-ft core interval was carefully oriented in an effort to avoid bias. Other strike, dip, and slickenside bearing measurements made on some of the more competent Type 3 fracture planes throughout the oriented core intervals also suggest these planes are randomly oriented.

Verbeek and Grout (1984) hypothesized that these Type 3 fractures are compaction and dewatering planes with minor slippage (1 to 2 cm), that formed early in the depositional history of the rocks while mudstones were still plastic. The undulating to conical surfaces and random orientation support this hypothesis. In outcrop, Verbeek and Grout (1984) recognized that this type of fracturing in mudstone is associated with discrete dewatering conduits in overlying sandstones. Three such dewatering pipes were identified in the core (e.g. Figure 57) and are included in the fracture database as Type D. These dewatering fractures or planes in mudstones probably act as planes of weakness, but only rarely as planes of permeability at depth as evidenced by the scarcity of mineralization.

The higher frequency of dewatering fractures in the core above 6750 ft (Figure 51) may be due to increased rates of deposition of these strata. More rapid deposition would encourage the entrapment of water in undercompacted sediments, and thus the formation of dewatering structures as the dewatering took place at greater than usual depths.

e. Shears in Mudstones (Type 6)

It is difficult to distinguish Type 6 from Type 3 shear fractures in mudstones. However, it is important to do so since Type 3 fractures have a distinct prelithification origin, whereas Type 6 fractures were most likely formed after lithification of the mudstones. Shear fractures in sandstones and siltstones were distinguished by dip angle, and in the case of Type 2 by host lithology, whereas Type 3 and Type 6 fractures occur in the same lithologies and have comparable dip angles. Type 6 shear fractures, by

-79-

Figure 57. Dewatering Pipe in Sandstone at 5798 ft in MWX-1

definition, occur in predominantly mudstone lithology, are relatively planar, and are covered with linear slickensides that are continuous across the entire fracture plane exposed in the core. Eight Type 6 fractures have been identified in MWX core and are described in Appendix A. These fractures range from horizontal to 50° in dip, and most of the fracture planes appear to be polished. Figure 58 shows the distribution of these Type 6 fractures with depth, and Figure 59 is comprised of photographs of Type 6 fractures.

All of these Type 6 fractures have a slickenside bearing that is within 10° of the dip azimuth except the fracture at 6060.0 ft in MWX-1. The angle between the dip direction and the slickenside bearing is closer to 50° at this location. Only three of these fractures occur in oriented core. At 8123.9 ft in MWX-2, the dip azimuth is N68E and the slickenside bearing is N58E, whereas at 6884.9 ft in MWX-3, both the dip direction and slickenside bearing are N65E. At 8101.4 ft in MWX-2, the slickenside bearing is N10E on this horizontal Type 6 fracture.

All of these fractures separated along the fracture plane in the core barrel, so no fracture width data is available. Three of the fractures are partially mineralized. Calcite was identified on two Type 6 fractures and dickite was detected on one fracture. The calcite is subhedral at 6060.0 ft in MWX-1, but not at 6884.9 ft in MWX-3. "Frac blast" fractures are associated with the dickite-mineralized Type 6 fracture at 6151.1 ft in MWX-1 (Figure 60).

With the exception of the Type 6 at 8123.9 ft in MWX-2, all of these fractures occur in fairly homogeneous mudstone lithologies. At 8123.9 ft, the host rock is finely interlaminated siltstone and mudstone, and this Type 6 fracture crosscuts bedding.

D. SUMMARY AND CONCLUSIONS

A comprehensive natural fracture database for the Department of

-81-

Figure 58. Frequency Distribution of Type 6 Fractures With Respect to Depth; Core Data From MWX-1 and MWX-2

-82-

Figure 59. Type 6 Fractures in Core; (a) 5848.5 ft, MWX-2; (b) 8123.9 ft, MWX-2

Figure 60. Type 6 Fracture With Associated "Frac Blast" Fractures, 6151.1 ft, MWX-1 Energy's 4200 ft of MWX core is presented and described in this report. Approximately 1880 natural fractures and 117 mechanically induced fractures are included. This database is presented in Appendix A. (It is also available on floppy disc upon request; see page iii for details.)

Approximately 1425 or 75 percent of the MWX fractures are interpreted as early-formed dewatering and compaction planes. They are randomly oriented, undulating, polished planes generally inclined from 20° to 50°. Type 3 fractures are rarely mineralized, and slickensides on these fracture planes are curvilinear.

Extension fractures (Types 1, S, 7 and 8) make up 20 percent of the MWX natural fracture database. These include approximately 275 vertical to subvertical, planar, mostly calcite-mineralized Type 1 and S fractures, as well as 27 horizontal to subhorizontal, planar, mostly calcite-mineralized Type 7 fractures. Types 1, S and 7 are frequently stranded or branched. Approximately 25 percent of the Type and S fractures have been oriented with respect to true north. The orientation data indicate that the predominant fracture strike is west-northwest parallel to the present-day maximum compressive stress direction, independently measured at the MWX site. A few Type 1 and S fractures with strike azimuths north-northwest and northeast were also identified in some core intervals.

In addition, there are roughly 61 "frac blast" type extension fractures, densely concentrated between 6100 and 6200 ft in MWX-1. The "frac blast" or Type 8 fractures have imparted an exploded rock texture to the host rock and are frequently coincident with sedimentary structures and bedding planes. These Type 8 fractures range from undulatory to planar and from horizontal to vertical. Dickite is the predominant fracture mineralization.

The remaining 5 percent of the natural fractures in MWX core are shear fractures that are probably not related to mudstone dewatering. These are the Type 4, 5, 2, and 6 fractures discussed in this paper. There were four

-85-

low-angle, slickensided Type 4 fractures identified in MWX sandstones and siltstones. Type 4 fracture planes range from horizontal to 40° in dip and calcite is the predominant mineralization. With the exception of Type 4 and 5 shears, the relative motion along the MWX shear fractures is generally indeterminate. Two Type 4 fractures are thrust faults and two are strike-slip faults. The database includes only one vertical to subvertical, slickensided, calcite-mineralized Type 5 fracture in a sandstone lithology. Relative motion on this fracture also is apparently strike-slip.

A total of 77 slickensided Type 2 fractures, confined to carbonaceous mudstone laminations in sandstone and siltstone, have been identified in MWX core. Type 2 fractures range from horizontal to 50° in dip, and onethird of these fractures are mineralized, predominantly with calcite.

There are eight Type 6 fractures described in the MWX fracture database. The Type 6 fractures in mudstone are planar, occasionally mineralized fractures with continuous linear slickensides.

Changes in fracturing characteristics at MWX are in places coincident with changes in depositional environment and in other places with lithologic boundaries. For example, Type 1 and S fractures are confined to sandstone and siltstone lithologies and are densely concentrated in the lower fluvial and upper coastal environments. Present-day stress changes are also coincident with lithologic boundaries (Warpinski et al., 1985; Warpinski and Teufel, 1987) and possibly coincident with depositional boundaries (Warpinski, 1988).

Branagan et al. (1984) established that natural fractures make a substantial contribution to reservoir production at the MWX site. Results of laboratory permeability tests of matrix rock indicate permeabilities that are one to three orders of magnitude lower than those calculated from well test results at MWX. Lorenz and Finley (1987) discussed fracture characteristics and related production for Mesaverde intervals tested at

-86-

MWX, but additional work needs to be done. Although the majority of fractures are Type 3 dewatering fractures that are probably unimportant to reservoir productivity, there are more than 400 fractures whose significance to reservoir productivity needs to be completely evaluated.

It is reasonable to assume that all mineralized fractures, both shear and extension fractures, were open to the movement of fluids at some time in the depositional and burial history of the rocks, and they are most likely still open at depth. Figure 61 shows the distribution of these potentially permeable paths with respect to depth at MWX. Patchy and incomplete mineralization may act as a natural proppant, and laboratory tests suggest that even the most completely calcite-mineralized fractures enhance permeability of sandstone cores one to two orders of magnitude (Lorenz et al., 1986). Moreover, subhedral mineralization on some of the fracture walls is direct evidence for an opening along the fracture at depth. Apparently unmineralized shear fractures may also be propped and permeable as shearing may create asperities on fracture walls.

Natural fractures are the dominant control on in situ reservoir permeability at the MWX site (Lorenz and Finley, 1987; Lorenz et al., 1986). This report is a detailed catalog of the natural fractures encountered in core from the MWX wells. Its purpose has been to present a quantitative fracture database to be used for future studies in fracture distribution and its effect on reservoir production.

Figure 61. Frequency Distribution of all Mineralized Fractures With Respect to Depth; Core Data From MWX-1 and MWX-2

REFERENCES

- Branagan, P. T., G. Cotner, S. J. Lee, R. Wilmer, "Interference Testing of the Naturally Fractured Cozzette: A Case Study at the DOE MWX Site," SPE 12869, Proceedings of the SPE/DOE/GRI Unconventional Gas Recovery Symposium, Pittsburgh, PA, May 1984, pp 359-366.
- Clark, J. A., "Descriptive Statistics--MWX Core Fractures Described by D. D. Madsen" memorandum of record in MWX database, 1.4.4.009, August 1983.
- 3. Geissman, J., Personal Communication on Paleomagnetic Techniques, 1988.
- 4. Hancock, P. L., "Brittle Microtectonics: Principles and Practice," Journal of Structural Geology, 1985, Vol. 7, Nos. 3/4 pp 347-457.
- Lorenz, J. C., "Reservoir Sedimentology of Mesaverde Rocks at the Multiwell Experiment Site and East Central Piceance Creek Basin," Sandia National Laboratories Report, SAND87-0040, January 1987.
- 6. Lorenz, J. C., P. T. Branagan, N. R. Warpinski, A. R. Sattler, "Fracture Characteristics and Reservoir Behavior of Stress-Sensitive Fracture Systems in Flat-Lying, Lenticular Formations," SPE-15244, Proceedings SPE Unconventional Gas Technology Symposium, Louisville, Kentucky, May 1986, pp 423-436.
- 7. Lorenz, J. C. and S. J. Finley, "Differences in Fracture Characteristics and Related Production of Natural Gas in Different Zones of the Mesaverde Formation, Northwestern Colorado," SPE 16809, 62nd Annual Technical Conference and Exhibition of the Society of Petroleum Engineers of AIME/Formation Evaluation and Reservoir Geology Proceedings, Dallas, TX, September 1987, pp. 589-593.
- Lorenz, J. C. and S. J. Finley, "Significance of Drilling and Coring-Induced Fractures in Mesaverde Core, Northwestern Colorado," Sandia National Laboratories Report, SAND88-1623, June 1988.
- 9. Maynard, B. J., "Geochemistry of Oolitic Iron Ores, and Electron Microprobe Study," Economic Geology, Vol. 81, 1986, pp 1473-1483.
- Sattler, A. R., 1984, "The Multiwell Experiment Core Program II," SPE/DOE/GRI 12584, Proceedings of the SPE/DOE/GRI Unconventional Gas Recovery Symposium, Pittsburgh, PA, May, 1984.
- 11. Verbeek, E. R. and M. A. Grout, "Fracture Studies in Cretaceous and Paleocene Strata in and around the Piceance Basin, Colorado: Preliminary Results and Their Bearing on a Fracture-Controlled, Natural Gas Reservoir at the MWX Site," USGS Open File Report 84-156, 1984.
- 12. Warpinski, N. R., Personal Communications, 1988.

13. Warpinski, N. R. and L. W. Teufel, "In Situ Stresses in Low-Permeability, Nonmarine Rocks," SPE/DOE 16402, Proceedings 1987 SPE/DOE Joint Symposium on Low Permeability Reservoirs, Denver, CO, May 1987, pp 165-172.

LEGEND FOR APPENDIX A

Well Number: MWX-1, MWX-2, or MWX-3

<u>Core Depth</u> and <u>Log Depth</u>: Depth of the top of the fracture or fracture group in feet.

Frac Type: Fracture type as defined in text.

- 1 vertical to subvertical extension fracture
- 2 shear fracture confined to carbonaceous lamination in sandstone or siltstone
- 3 dewatering fracture
- 4 low angle shear fracture in sandstone or siltstone
- 5 high angle shear fracture in sandstone or siltstone
- 6 shear fracture in mudstone
- 7 horizontal to subhorizontal extension fracture
- 8 "frac blast" fracture
- S fracture swarm of type 1 extension fractures; fracture number is denoted as $\underline{03}$
- C mineralized coal cleat
- N fractured sandstone clast encased in mudstone
- D dewatering pipe or conduit
- P drilling-induced petal fracture
- B coring-induced scribe-line fracture
- <u># of Fracs</u>: Number of fractures that fit the description.
- <u>Frac Height</u>: Core height of a fracture or fracture group in feet. <u>9999</u>-information not available.
- <u>Frac Width</u>: Maximum fracture width in mm; this width is always the maximum width of a single strand of the fracture or fracture group. <u>9999</u>--information not available.
- Frac Strike*: True strike. 999--information not available.
- <u>Dip Angle</u>: Dip inclination in degrees; angle measured relative to horizontal. <u>99</u>--information not available.
- <u>Dip Azimuth</u>*: True direction of down dip. <u>999</u>--information not available.
- <u>Slick Bearing</u>*: True bearing of the slickensides. <u>999</u>--information is not available.
- * The true orientations have been determined using multishot oriented core data unless they are followed by a P. True orientations followed by a (P) were determined using paleomagnetic techniques.

Type Motion: Type of motion with reference to shear fractures

- R reverse
- N normal
- S strike slip
- 9 information not available

Slick Extent: Extent of slickensides

- + slickensides across core break
- - slickensides in patches
- 9 information not available

Fill Type: Type of mineralization

C - calcite
Q - quartz
D - dickite
B - barite
H - chamosite
999 - no mineralization detected

Fill Amount: Amount of mineralization

- P partial fill C - complete fill
- 9 no mineralization

Crystal Type:

- S macroscopic subhedral crystals present
- 9 no mineralization
- blank no macroscopic subhedral crystals detected.

Top Term: Upper termination of fracture or fracture group

- 1 at mudstone contact
- 2 out of core
- 3 within lithology
- 4 at gradational mudstone contact
- 5 at mudstone lamination in sandstone or siltstone
- 6 at grainsize change other than mudstone
- 7 termination sampled (information unavailable)
- 8 at rubble zone
- 9 information not available
- <u>Bot Term</u>: Bottom termination of fracture or fracture group. Same legend as Top Term above

Lith: Predominant lithology

- 0 finely interlaminated mudstone and siltstone
- 1 coarse sandstone
- 2 medium-grained sandstone
- 3 fine grained sandstone
- 4 fine grained sandstone with mudstone laminations
- 5 sandstone, siltstone, and mudstone intermixed with soft sediment swirls
- 6 siltstone
- 7 mudstone
- 8 coal
- 9 information not available

Lab Analyses: Laboratory analyses completed

- T petrographic analysis
- S SEM analysis
- X x-ray diffraction analysis
- F fluid inclusion analysis
- blank no lab analysis conducted

Second Line: Additional comments

APPENDIX A

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	4170.0	4160.0	3	8	3.7	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4179.3	4169.5	3	б	1.3	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4181.5	4171.5	3	4	.3	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4182.8	4173.0	3	8	3.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4197.8	4190.0	3	15	2.2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4202.0	4194.0	3	6	1.9	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4207.6	4198.5	3	1	.2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4211.7	4202.0	3	12	4.8	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4248.6	4238.5	3	б	.4	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4265.7	4256.0	3	12	.7	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4271.0	4261.0	1	1	2.6	0.8	999	90	999	999	9	9	с	С		1	1	3	FT
1	4273.7	4264.0	3	7	1.8	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4279.5	4269.5	3	11	4.1	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4288.0	4278.0	3	3	.5	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4333.7	4323.5	1	1	1.5	0.2	999	90	999	999	9	9	С	с		3	3	2	
1	4337.6	4327.5	3 111101	1	.2	9999	999	50	999	999	9	9	999	9	9	2	2	7	
1	4341.9	4332.0	1	1	1.1	0.2	999	90	999	999	9	9	С	С		3	3	1	
1	4361.5	4351.5	3	7	1.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4376.5	4368.5	3	9	3.5	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4385.0	4377.0	3	4	.5	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4397.1	4389.0	3	11	6.5	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4406.3	4398.5	3	7	3.7	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4427.0	4419.0	3	2	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4430.0	4422.0	3	2	. 2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4432.1	4424.0	3	3	.2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4434.6	4426.5	3	2	.2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4437.5	4428.5	3	2	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4442.5	4431.5	3	2	. 2	9999	999	99	999	999	9	9	999	9	9	9	9	7	

-A5-

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	4444.5	4434.5	1		.9		999 999	90	999 31 CIME	999	9	9	C	C		1	2	3	
1	4452.0	4442.0	3	ENECH	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4454.4	4444.5	3	7	2.1	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4460.9	4451.0	3	6	1.9	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4465.0	4455.0	3	10	3.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4474.0	4464.0	3	10	4.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4481.2	4471.0	3	5	1.5	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4491.9	4480.0	1	1	1.7	0.4	999	90	999	999	9	9	С	С		3	1	3	
1	4493.6	4482.5	3	16	5.9	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4505.7	4493.5	3	4	. 0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4509.9	4498.0	3	7	6.6	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4529.1	4517.0	Р	1	. 2	9999	999	70	999	999	9	9	999	9	9	9	9	3	
1	IN1 4543.6	EATION # 4531.5	NGLE 7	40 DE0 1	G.,CONCA	AVE UP 9999	999	0	999	999	9	9	999	9	9	9	9	9	
1	SAN 4571.4	4PLED BY 4561.5	PITT 1	eman ai 1	ND SPRUN 2.6	NT,FILI 0.2	.?,NO DA 999	ата AVA 90	AILABLE 999	999	9	9	С	С		3	3	3	
1	ENE 4581.7	ECHELON 4573.5	MOSTI 1	LY 2 S' 1	TRANDS, 1	rerms w 0.1	999	3UT CLO 90	OSE TO MU 999	JDST LAM 999	OR WHEE 9	RE LAMS 9	MORE C	DENSE C		3	3	3	
1	ENH 4585.5	ECHELON 4576.5	FRAC 3	ORGAN: 6	ICS WITH 1.5	4 CALCI 9999	TE 999	99	999	999	9	9	999	9	9	9	9	7	
1	4589.5	4580.5	3	18	7.5	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4600.5	4588.5	3	3	.5	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4611.5	4599.5	3	11	3.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4622.0	4611.0	3	7	.8	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4625.0	4614.0	3	6	2.6	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4630.3	4619.5	1	1	.5	0.2	999	90	999	999	9	9	с	С		5	5	3	
1	FRA0 4645.3	C ONLY S 4634.4	SEEN C 2	ON ONE 1	SIDE OF	F CORE, 9999	ROCK V 340	VERY CA 10	ALCAREOUS 250	5 250	9	-	999	9	9	2	2	4	
1	BUM 4656.4	PY IRRE0 4645.5	SULAR P	PLANE 3	WITH PA 1.2	ATCHES 9999	OF SLIC 120	CKS 99	999	999	9	9	999	9	9	9	9	3	
1	PETA 4657.7	AL FRACS 4646.5	5, EAC P	CH ÁBO 1	UT 0.1' .2	IN LEN 9999	IGTH,INI 999	IATION 99	ANGLES 3 999	30 DEG.,(999	CONCAVE 9	UP 9	999	9	9	9	9	3	
1	IN: 4658.5	IATION A 4647.5	NGLE 3	35 DE 16	GCONCA 4.9	AVE UP 9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4664.0	4651.5	3	6	3.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4705.6 FRA	4692.5 AC JUST	1 BAREI	1 LY SKII	.2 MMED COR	0.2 RE,FILI	279 , LOOKS	90 PATCH	999 Y on Expo	999 SED PLAI	9 NE	9	С	с		2	2	3	

-A6-

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	4707.0	4694.0	3	2	.0	9999	999	99	999	999	9	9	999	<u>9</u>	9	9	9	7	
1	4708.0	4695.0	3	7	2.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4712.0	4699.0	3	15	7.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4721.0	4708.0	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4721.9	4709.0	3	2	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4732.0	4719.0	3	7	2.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4734.8	4722.0	1	1	1.0	0.3	999	90	999	999	9	9	С	С		1	5	6	
1	4735.2	4722.5	P	5 5 NDS	ARALLEL	10 PE1 9999	999	40	999	999	9 9	9 9	999	9	9	9	9	6	
1	AP 4736.3	PROX 0.1 4723.5	I' IN P	LENGTI 2	H,INIATI .3	ON ANG 9999	SLE 50 I 999	DEG.,CO 99	ONCAVE UI 999	999	9	9	999	9	9	9	9	6	
1	AP 4736.6	PROX 0.1 4724.0	1'IN 1 1	LENGTH 1	INIATIC	ON ANGI 0.1	JE 33 DE 999	EG.,CON 90	NCAVE UP 999	999	9	9	С	С		3	4	6	
1	NO 4737.3	USABLE 4725.5	MULTI P	ISHOT I	DATA .1	9999	999	99	999	999	9	9	999	9	9	9	9	6	
1	IN 4739.6	IATION 4727.5	ANGLE 3	45 DE(G. .2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	LA 4747.0	RGER 3 1 4735.0	TYPE, 3	ALL TI 11	HE WAY A 2.5	ACROSS 9999	CORE 999	99	999	999	9	9	999	9	9	9	9	7	
1	4750.8	4738.5	Р	7	3.5	9999	999	99	999	999	9	9	999	9	9	9	9	6	
1	SH 4758.0	ORT (0.1 4746.0	1'),LC 3	OW ANG 4	L,TWO-OF .8	99999	SIDES 999	OF COF 99	RE-INIAT. 999	LON ANGLE 999	IS 45&65 9	9 9	999 999	Р 9	9	9	9	7	
1	4759.1	4757.0	1	1	.4	0.1	999	90	999	999	9	9	С	С		3	3	6	
1	MU 4796.0	DDY SIL 4786.0	rst, or 1	NLY SEL	EN ON ON .6	NE SIDE 0.5	278 COF	90 RE,NO	JSABLE MU 999	JUTISHOT 999	DATA 9	9	С	С		б	1	3	
1	ST 4799.0	RANDED, 4789.0	TOPTEE 3	RM (d II 12	NTERLAMI 3.0	INATED 9999	MUDST A	AND SS 99	999	999	9	9	999	9	9	9	9	7	
1	4803.0	4793.0	3	4	3.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4812.0	4802.0	3	4	2.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4814.5	4804.5	P	3	1.9	9999	295	99	999	999	9	9	999	9	9	9	9	3	
1	4817.5	4807.5	3 3	PETAL: 1	.0	9999	100	99 99	190 190	190	E UP 9	9	999	9	9	9	9	7	
1	4817.5	4807.5	3	1	.0	9999	20	99	290	310	9	9	999	9	9	9	9	7	
1	4817.5	4807.5	3	13	6.5	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4819.2	4809.0	3	1	.0	9999	345	99	255	255	9	9	999	9	9	9	9	7	
1	4819.2	4809.0	3	1	.0	9999	245	99	155	155	9	9	999	9	9	9	9	7	
1	4822.0	4812.0	3	2	.0	9999	240	99	150	150	9	9	999	9	9	9	9	7	
1	4822.0	4812.0	3	1	.0	9999	315	99	45	90	9	9	999	9	9	9	9	7	

- A 7 -

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	4823.0	4813.0	3	1	.0	9999	240	99	150	150	9	9	999	9	9	9	9	7	
1	4839.3	4829.5	3	17	3.6	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4843.8	4834.0	1	1	. 9	0.2	999	90	999	999	9	9	С	С		3	7	2	
1	4846.4	4837.0	1	1	1.2	1.0	999	90	999	999	9	9	QC	с		3	6	2	FT
1	LO 4853.6	4843.5	5 ALL 1	CALCI:	TE IN TH 1.0	IINSECI 0.3	'ION 999	90	999	999	9	9	С	с		3	1	2	
1	4858.5	4848.5	3	1	. 2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4864.5	4854.5	3	13	11.5	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4877.3	4867.5	1	1	1.0	10.0	999	90	999	999	9	9	С	Р	S	1	3	3	
1	OPE 4881.2	N FRAC,0 4871.0	CORE 1	BROKEN 1	HERE,WI	DTH IS. 0.2	S ESTIMA 999	ATED 90	999	999	9	9	с	С		8	3	3	
1	4889.7	4879.5	3	4	2.6	9999	999	60	999	999	9	9	999	9	9	9	9	7	
1	ALL 4901.6	PARALLE 4891.5	EL, PO 1	OLISHEI 1	SURFAC	ES THR 0.4	OUGH CO 999	ORE 90	999	999	9	9	С	с		7	6	2	
1	МО 4904.6	STLY CON 4894.5	IPLETI	E BUT S 1	SOME GAP 1.6	S IN F 1.4	ILL,POS 999	SSIBLY 90	SOME QT2 999	2 TOO 999	9	9	QC	Р	s	5	2	2	Т
1	FI 4908.0	NE QTZ, 4898.0	CL T: 1	S SAMPI 1	LE MAY S 1.0	5HOW CA 10.0	LC UNDE 999	ER QTZ, 90	OPEN FRA 999	AC-WIDTH 999	FR MAD 9	9	Q	Р	s	5	7	2	
1	FI 4909.1	NE QTZ, 4899.0	MAY I 5	BE CONS 1	CINUOUS	WITH F 9999	RAC BEI 999	TA WOL 80	4909.1,0 999	OPEN FRAG 999	C-WIDTH S	ESTIMA:	CED QC	Р	S	7	5	2	
1	OP 4910.0	EN FRAC, 4900.0	MAY 1 2	BE CONT 1	r.W/FRAC .1	2 ABOVE 9999	S,UNDULA 999	ATING É 30	PLANE WIT 999	TH ORGANI 999	ICS , CRO 9	SSCUTS	SOME 999	LAMS 9	9	2	2	2	
1	FR. 4919.7	AC ABOVE 4909.5	TERI 1	MS HERI 1	Ξ .5	0.2	999	90	999	999	9	9	с	с		5	7	6	
1	FI 4922.0	LL LOOKS	5 PAR	FIAL ON	V EXPOSE	D PLAN	IE 999	99	999	999	9	9	999	9	9	9	9	7	
-	4952 7	4950 5	7	1	212	9999	999	99	999	999	9	9	999	9	9	9	م م	, 7	
1	LA	RGER 3 1	YPE	5	1 2	0000	000	00	000	000	9	0	000	0	9	0	0	, 7	
1	4959.0	4947.0	נ ר	,	1.2	9999	999	33	333	999	9	9	999	9	9	9	9	7	
T	4964.4 LA	4952.5 RGER 3 1	YPES	4	2.9	9999	999	99	999	999	9	9	999	9	9	9	9	/	
1	4978.0	4966.0	3	11	3.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4983.2 TH	4967.0 REE ENEC	1 יHELON	1 A STRAN	.4 JDS	0.1	999	85	999	999	9	9	С	С		3	3	3	
1	4985.2	4969.0			5.7	1.5 E INTE	999 ו פוגעסי	90	999 MIDDLE	999	9	9	С	С		1	1	3	Т
1	4997.0	4971.5	3	5 5	.5	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	4999.1	4973.5	1	1	.1	0.1	999	90	999	999	9	9	С	С		3	3	4	
1	5001.4	4975.5	1	1	.4	0.4	999	90	999	999	9	9	С	с		5	7	3	
1	0. 5014.4	SAMPLE	; OUT 1		IOM, STRA	0.3	00KS PZ 999	90	ON EXPOS	SED PLANE 999	9	9	С	С		3	6	3	
1	PA 5016.4 LA	KALLEL F 5005.0 RGE SUBH	RACS 1 IEDRAI	SEPARA 1 CRYS1	ATED BY 3.5 FALS,FRA	0.2, 10.0 C OPEN	999 -WIDTH	85 FROM M	999 1ADSEN, Q1	999 7Z NOT SE	9 CEN IN T	9 HINSECT	QC TION	Р	S	2	1	3	FTS

-A8-

NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	5034.0 @TC	5023.0	 1 זק דד	 1 קאד ש	3.1	1.4	999 סאפיד כב	90 90	999 50005	999 -SINGLE	9 5772 AND	 9 ספייפס	С рартти	C		5	6	2	
1	5035.6	5024.5	$\frac{15}{2}$	1 1	יד. יד. יד. יד.	9999	999 1KF @50	35	999 999	999 דעת דםא	9 (C~20FFS	- -	C	P		2	2	4	
1	5036.2	5025.0	$\frac{2}{1000}$			9999	999 999	20	999	999	9 9	-	C	Р		2	2	4	
1	5041.2	5030.0	1	ORMAL 1	.2	0.1	9999 999	90	999	1N FRACE 999	<u>1</u> 5034.0, 9	9	C C	С		5	3	2	
1	5066.0	5055.0	and 3	10	3.3	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5067.1	5055.5 W/TVDE	1 2 503		.3	0.3	999	50	999	999	9	9	С	С		2	2	7	
1	5072.5	5060.5	D	1	1.3	0.5	999	90	999	999	9	9	С	Р		1	1	б	
1	MUI 5074.9	5063.0	1	S PLOM 1	.2	0.2	999	90	S-30 DEG. 999	999	9 9	9	С	С		5	4	2	
1	MOS 5078.5	STLY COM 5067.5	IPLETE 1	FILL- 1	SOME GA	APS 1.0	999	80	999	999	9	9	С	С		3	1	2	
1	WA1 5080.8	7Y PLANE 5069.5	1	1	1.0	0.1	999	90	999	999	9	9	С	С		1	1	2	
1	ENE 5081.9	SCHELON	STRAN 3	DS 2	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5083.3	5071.0	1	1	.3	0.3	999	90	999	999	9	9	с	С		2	4	2	
1	5094.2	5083.0	1	1	.3	0.2	999	90	999	999	9	9	C	С		3	1	2	
1	5113.1	5102.0	3	7	2.9	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5122.0	5111.0	3	3	.6	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5124.8	5113.0	1 IN ET	. 1 	4.2	1.2	999 50 25	85 DEC	999	999	9 . OF FRA	9 C 850	C	С		6	2	2	
1	5124.8	5114.0		1	1.6	0.3	999 999	90	999	999	9		C	С		6	3	2	
1	5131.9	5121.0	1	$\frac{1}{1}$	2.1	1.2	999	85	999	999	9 9	9 9	CORE	С		2	6	2	
1	5139.3	5128.0	3	2	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5140.0	5128.5	1	1	1.0	0.4	999	90	999	999	9	9	С	С		2	2	3	
1	5143.7	5131.0	3	2	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5144.4	5131.5	1	1	2.0	0.2	999	90	999	999	9	9	С	С		1	3	2	
1	5152.1	5139.0		1	2.7	0.5	999 7-54 1)	85 BOUNDE	999 DM ENECH	999 ET ON OUT	9 OF COR	9 E @MID	C CT CON	C		2	2	1	
1	5157.3	5144.5	3	.4 GA 4	.6	99999	999 999	,BOITE 99	999	999	9	9 9	999	9	9	9	9	7	
1	5157.9	5145.0	1	1	.5	0.3	999	90	999	999	9	9	С	C		1	5	6	
1	5163.0	5150.0	3	5	2.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5177.0	5162.5	3	6	2.3	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5183.0	5168.0	3	8	1.3	9999	999	99	999	999	9	9	999	9	9	9	9	7	

-A9-

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	5191.3	5175.0	3		.4	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5192.4	5176.0	3 3		.3	9999	999	99 99	999	999	9	9	999	9	9	9	9	7	
1	LAF 5199.2	RGER 3 1 5185.5	ГҮРЕ, 1	STRIKE 1	PARAL	LEL TO 0.2	FRAC AI 999	BOVE BU 85	JT OPPOSI 999	TE DIP 999	9	9	с	С		2	1	6	
1	SON 5199.7	ME GAPS 5186.0	IN F: 3	ILL 11	9.3	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5213.0	5197.5	3	4	4.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5221.0	5206.0	3	5	2.8	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5223.8	5209.5	1	1	1.0	0.2	999	90	999	999	9	9	с	с		1	6	3	
1	5225.8	5211.5	3	3	. 2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5227.2	5212.5	1	1	.3	0.2	999	90	999	999	9	9	с	С		1	3	6	
1	5232.0	5217.5	1	2	.6	0.3	999	90	999	999	9	9	С	С		5	1	3	
1	5233.4	5219.0	LEL FI 3	RACS I. 1	5 IN A.	9999	999 999	S SOME 99	GAPS 999	999	9	9	999	9	9	9	9	7	
1	5235.1	5221.0		1	.4	0.2	999	90	999	999	9	9	С	с		1	1	6	
1	5239.7	5225.5	1	om mads 1	1.2	0.2	999	90	999	999	9	9	с	с		5	5	3	
1	5249.1	5234.5	1 1	$\frac{1}{2}$.5	0.2	999	85	999	999	9	9	с	С		1	1	3	
1	SON 5251.4	1E GAPS 5236.5	IN F. 1	ILL, ТW 1	O PARA	LLEL FF 0.4	999	EATER 1 85	'HAN 0.1' 999	арарт 999	9	9	с	С		1	1	2	
1	5255.8	5241.5	1	1	.4	0.4	999	65	999	999	9	9	С	с		6	2	7	
1	5255.8	5241.5	a SANI 3	12	17ACT 3.4	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5264.0	5250.5	3	10	2.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5268.3	5255.0	1	1	.7	0.2	999	90	999	999	9	9	С	С		6	3	3	
1	5269.6	5256.0		1	3.0	0.4	999	90	999	999	9	9	с	С		3	1	3	S
1	5274.3	5260.0	1 1	ADSEN'S	NOTES	0.2	999	90	999	999	9	9	с	с		1	1	5	
1	ТЕР 5277.4	RMS AT 1 5263.0	MUD SI 3	WIRLS 5	2.6	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5283.1	5268.5	Р	2	.3	9999	999	60	999	999	9	9	999	9	9	9	9	3	
1	TWC 5284.4	D PETALS 5270.0	S (0.1 3	12') 7	INIATI 2.1	ON ANGI 9999	LES 50 999	& 55 DH 99	EGCONCA 999	VE UP,B 999	OTH STRA 9	ANDED 9	999	9	9	9	9	7	
1	5302.8	5288.5	1	1	1.4	0.2	999	90	999	999	9	9	с	с		1	2	3	
1	JUS 5304.8	ST SKIM: 5291.5	S EDGI 2	E OF CC 1	RE .1	9999	999	30	999	999	9	-	с	Р		2	2	4	
1	SLI 5305.4	K BEARIN 5292.0	NG 501	DEG. OF 1	FOFS	TRIKE (9999	OF FRAC(999	25302.8 50	B,DOWNDIF 999	9999 30DEG.	OFF OF S 9	SLK BEA	R. 999	9	9	2	2	4	
1	SLI 5319.6 BO	KS OFF (5306.0 T. TERM	0F DON 1 . @CON	WN DIP 1 NTACT W	APPROX 1.8 VITH IN	. 30DEC 0.5 TERBEDI	5. 999 DED SS/	90 MUDST	999	999	9	9	С	с		1	4	3	

-A10-
NO	CORE DEPTH	LOG DEPTH	FRAC	# OF FRACS	FRAC HEIGHT V	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	5321.3	5308.0	P	1 VE 10D	.1	9999 0E ED	999	99 IVE (052	999	999	9 101 E 65	9 DEC	999	9	9	9	9	9	
1	5321.8	5308.5	1		.4	0.5	999	90	999	999	9	DEGCC 9	C	c		3	1	4	
1	ROC 5322.5	5309.0	-INTERE 3	BED MU 1 .	.0 ST & SZ	ANDST 9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5324.6	5311.0	1 - דאויידיים ד	1 תידתיקם	.3 MIDST 6	0.1	_99 9	90	999	999	9	9	С	С		4	4	4	
1	5332.6	5319.0	3			9999	999	60	999	999	9	9	999	9	9	2	2	7	
1	5333.6	5320.0	3	1	.2	99999	2999	60 60	999	999	9	9	999	9	9	2	2	7	
1	5334.1	5320.5	1	2 ABOV 1	1.1	1P SLK 0.4	999	PRAC 90	999	999	9	9	с	С		1	1	3	
1	FII 5341.4	L LOOKS 5325.0	5 PARTI 1	IAL ON 1	I EXPOSEI	D PLAN 1.0	E 999	90	999	999	9	9	с	с		1	2	3	
1	BO1 5343.7	TTERM-1 5326.5	STRANI 3	DOUT 7	OF CORE 2.8	& 1 S 9999	TRAND (999	MUDST 99	CONTACT 999	CLOSE TO 999	DEDGE, 9	9	999	9	9	9	9	7	
1	5347.4	5330.5	1	1	.3	0.1	999	90	999	999	9	9	С	С		3	3	2	
1	5358.6	5343.0	1	1	1.4	0.5	999	90	999	999	9	9	С	С		2	1	2	
1	ENE 5360.9	ECHELON 5345.5	STRANI 1	DS, WA 1	VY & CLO	OSE TO 0.4	EDGE (999	OF CORE 90	999	999	9	9	с	С		3	3	4	
1	тнғ 5366.7	EE ENEC	CHELON 3	STRAN 3	ids .0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5368.1	5352.5	1	1	1.3	0.3	999	90	999	999	9	9	с	С		6	1	2	
1	GAF 5373.0	S IN FI 5358.5	ILL,TOE 3	P TERM 2	AT FINE	E SS C 9999	ONTACT, 999	, STRAN 99	IDED 999	999	9	9	999	9	9	9	9	7	
1	5373.4	5359.0	1	1	.7	0.2	999	90	999	999	9	9	с	С		1	1	2	
1	FOU 5375.3	JR ENECH 5361.0	IELON S	STRAND)S-0.2'E	ACH 0.4	999	85	999	999	9	9	с	С		2	1	4	
1	FII 5377.0	L PATCH 5362.0	IY ON I 3	EXPOSE 20	D PLANE 9.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5388.3	5377.5	1	1	.1	9999	999	90	999	999	9	9	с	С		3	3	3	
1	5388.8	5378.0	3	2	.0	9999	999	99	99 9	999	9	9	999	9	9	9	9	7	
1	5388.9	5378.0	N	20	.5	0.3	999	20	999	999	9	9	с	С		1	1	5	Т
1	5389.6 ⁽	APPROX 2 5378.5	20 STR# 1	ANDS) 1	FRACS EX	XTEND 0.1	1MM IN 999	PO MUDS 90	999 999	.G. 999	9	9	С	С		5	5	6	
1	5393.5	5379.0	3	5	1.4	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5398.6	5383.5	1	1	.5	0.1	999	90	999	999	9	9	с	С		3	5	2	
1	5399.3	5384.5	1	1	. 4	0.2	999	90	999	999	9	9	С	С		5	5	2	
1	FF 5406.0	AC MAY 5391.0	BE REI 1	LATED 1	TO FRAC 1.0	(d5398 0.8	.6-GAP 999	(d 2"MU 90	DST PARI 999	ING 999	9	9	С	С		3	5	2	
1	BC 5407.8	DT TERM 5393.0	@MUDS1 3	I SHAR 2	D,STRANI .0	DED, F 99 99	RAC NEA 999	AR EDGE 99	OF CORE 999	999	9	9	999	9	9	9	9	7	
1	5409.2 ST	5394.0 RANDED,	1 WIDEF	1 R AT	1.1 BOTTOM	0.8	999	90	999	999	9	9	С	С		4	2	3	

-A11-

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHI	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	5410.1	5394.5	 Р ТО ББ	2 2 2 2 2 2 2 2 2	.3	9999 BOVE ON	999 971112	99 101 A	999 955 I	999	9 10 AVE 110	9	999	9	9	9	9	3	
1	5428.6	5411.5	3	7	1.4	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5431.6 WI	5415.5 HOLE COP	1 RE, ST	1 RANDEI	2.2	0.3	999	90	999	999	9	9	С	С		1	3	3	
1	5438.4 TI	5422.5 HREE PAF	1 RALLEI	1 STRAN	.2 NDS APF	1.5 "ROX. 1	999 APART	70 ,60-70	999 DEG. DIH	999	9	9	С	С		3	3	6	
1	5439.5 TI	5423.5 ERMS WHE	1 ERE MU	1 JDST LA	.1 AMS MOF	0.2 E NUMER	999 OUS,STI	90 RAPPING	999 G CORRECT	999 TION-LOG	9 DEPTHS	9 CORRECT	C	С		6	6	6	
1	5427.6 FF	5429.5 RAC ONLA	7 7 PAR1	ן ו WAY י	.0 THRU CC	0.5 RE. FRA	999 C APPE	15 ARS TO	999 BE WITH	999 ⁻ IN ORGA N	9 NUDST LA	9 M.	С	С		2	3	4	
1	5429.9 BI	5432.0 UMPY PL	2 ANE	1	.0	9999	295	30	205	205	9	-	999	9	9	2	2	4	
1	5431.1 TV	5433.0 WO PARAI	1 LLEL F	2 FRACS (.3 GREATER	0.2 THAN 0	273 .1' APA	90 ART	999	999	9	9	С	С		1	1	6	
1	5433.9 F	5436.0	S KS PAT	3 ГСНУ ОМ	1.2 N EXPOS	0.5 FD PLAN	285	90 SWARM	999 FRACS 0	999 .2-1.2'10	9 NG.0.1-	9 0.5MM	С	С		1	3	3	
1	5437.5	5443.5	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5438.5	5444.5 ATCHES (2 DF CAI	1 СТТЕ (.0 OPEN FR	9999	340 Y TRRE	15 S BREAD	70 ג. דו איד איז	220 STALS . FA1	9 NT SLKS	-	С	Ρ	S	2	2	4	
1	5440.6 FI	5446.5 RAC IS (1 LOSE	1 TO EDO	.6 GE OF C	0.3	270 N FRAC	90 .FILL F	999 PATCHY OI	999 S EXPOSET	9) PLANE	9	С	С		3	1	3	
1	5442.2 MT	5447.0	1 .TST.F	1 1 7 T.T. 1		0.3 MOSTLY	330 TWO P	90 ARALLEI	999	999 S.BOTTERN	9 1 @2 TVP	9 E BELOV	C	С		1	5	6	
1	5445.0	5447.5 PPROX. H	3 700TAG	3 3	2.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5447.3 T	5449.0 ERMS WT1	1	1 CORE HO	.5 DRTZONI	0.5 MOLLY @M	310 UDST CO	90 ЭМТАСТ.	999 . STRANDEI	999 D-ONE STR	9 AND(0.2	9	С	С		4	3	5	
1	5447.3	5449.0	1	1	.3	0.5	310	90	999	999	9	9	С	С		4	2	5	
1	5448.0 AI	5450.0 PPROX. H	3 FOOTAG	6 SE	4.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5455.0 TV	5457.0 WO PARAI	1 LEL F	1 FRACS S	1.1 SEPARAT	1.0 ED BY L	280 ESS TH/	90 AN 0.1	, 999	999	9	9	С	С		1	1	3	Т
1	5461.5	5463.0	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	F
1	5474.0 SI	5475.0 LICKENCF	4 RYSTS	1 ON THE	.0 RUST FA	9999 ULT,OPE	290 N FRAC	15 SLK BI	20 EARING-UI	230 P MOVEMEN	R IT	+	С	Ρ	S	2	2	3	
1	5474.0 TC	5475.0 OP TERM	1 @THRU	1 JST FAU	.1 JLT ABC	0.2 VE,BOT	280 TERM CI	90 Lose To	999 D MUDST (999 CONTACT	9	9	С	С		3	1	3	
1	5475.0 SI	5476.0 LICKENCE	4 RYSTS	1 ON THE	.0 RUST FA	9999 ULT,OPF	320 N FRAC	15 SLK BI	230 EARING-UI	60 MOVEMEN	R IT	+	С	Ρ	S	2	2	3	
1	5475.3 Ot	5475.5 UT OF CC	7 DRE ON	1 I ONE S	.0 SIDE.0-	3.0 15DEG.	999 LOOKS 1	דאב ידו	999 HERE MAY	999 BE SLKS	9 IN PHOT	9 O-SAMPI	C	С		2	3	3	Т
1	5488.0	5490.0			.1 DE OE C	0.5	999	90	999	999	9	9	C	С		5	5	3	
1	5491.2	5493.0	2	1	.0	9999	295	10	2 05	15	9		999	9	9	2	2	4	
1	5491.5	5493.5	3	6	2.3	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5493.9 FT	5496.0 RACS 70-	S -75DE0	3 10063.5	1.4 EG 0.2-	1.0 NT'0.1	280 LENGTH	90 FILL F	10 PATCHY.0	999 .1-1.0мм.	9 BOTTERM	9 [0.1'M	C JDST F	C PART		1	5	6	
1	5495.4 Al	5497.5 LL DETAI	S ILS AS	3 5 ABOVI	.9 E EXCEF	1.0 T TOPTE	280 RM @0.1	90 1'MUDS	10 I PARTINO	999 G,SOME ST	9 RANDS A	9 REN'T F	QC TLLEI	C W/QTZ		5	1	6	Т

NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	.SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	5496.8	5499.0	3	4	1.2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5498.4	5500.5	1	1	. 5	0.5	290	70	20	999	9	9	С	С		1	3	6	
1	5499.6	5501.5	3	3	.5	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5503.7	5505.5	S	3	.9	1.0	45	90	999	999	9	9	QC	С		1	1	3	т
1	5506.0	5508.0	1		1.0		45	12 IN 8 80	999	999	9 9	ANALYS. 9	C	С		1	2	3	
1	5509.0	5510.5	.ні,ғк З	1	.0	99999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5509.8	5511.5	3	5	2.9	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5513.7	5515.0	3	3	.5	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5520.6	5522.0	1	1	1.7	0.5	295	85	999	999	9	9	С	С		3	1	3	
1	5523.0	5525.0	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5523.4	5 52 5.5	3	1	.1	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5527.8	5529.5	2 NG-11D	1	.1	9999 גיייד מ	315	30 מיזיידיים כ	45 ריפוזקטייי זאר	255 FAILT	R	- 1.5 9.1091	C	Ρ	S	2	2	4	
1	5528.0	5529.7	2 2			9999 יא אא שי	325	35	55	255	9	-	999	9	9	2	2	4	
1	5528.2	5530.0	2 SMALL		.3	9999 5000000000000000000000000000000000	325 S ASSOC	50 תידייי גדי	235 พรศา รศา	215 SED DI	9 MROTI	-	999	9	9	2	2	4	
1	5529.8	5531.5	7 F FRA		.1 .1 .1	1.4	999 TP	20	999	999	9	9	С	Р	S	2	3	3	
1	5530.4 TV	5532.5	7 	1 RACS 1	.1 " APART		230 SS	20	999	999	9	9	QC	Ρ	S	2	2	3	Т
1	5530.9 PT	5533.0 ANE BRO	2 KEN U	1 P SUBI	.0 THE SLIC	9999 KENCRY	999 STS.FT	10 ANAT	999 -OTZ ONLY	265 ASLICK F	R BEARING-	- UP - 5-10	QC DEG	Ρ	S	2	2	4	F
1	5531.2	5533.2 LCITE F	3 TLLED	3 VEINS	.6 S ASSUME	9999 D TO B	999 E SEDIM	99 IENTARY	999 FEATUR	999 איז איז פון איז	9 IS TOCAT	9 10N	999	9	9	9	9	7	
1	5531.8 FF	5533.5 ACS 0.2	S	3	.5	0.2	285	80	999	999	9	9	QC	С		1	1	6	Т
1	5532.1 TH	5533.7 HIS FRAC	1 WITH	1 IN FRA	.2 AC SWARM	0.2 ABOVE	325 POSSIE	80 BLY SOM	999 E OUART2	999	9	9	С	С		2	1	6	Т
1	5536.9 IN	5538.5 NIATION	P	1 35 DF	.0 EGCONC	9999 AVE UP	999	99	999	999	9	9	999	9	9	9	9	9	
1	5541.4 OF	5543.0 FSET @	1 TYPE	1 2 5543	2.2 3.2.PARA	0.2 LLEL T	999 O PETAI	90 ABOVE	999 5	999	9	9	С	С		3	3	3	
1	5543.2 SI	5544.5 K BEART	2 NG PA	1 RALLEI	.0 TO PET	9999 AL (255	999 36.9,NC	10 DT EXAC	999 TLY DOWN	999 I DIP	9	-	999	9	9	2	2	4	
1	555 5.5 AI	5558.5 L DATA	1 FROM	1 MADSEN	.7 N'S NOTE	0.8 S.STRA	999 NDED	90	999	999	9	9	С	С		3	3	3	
1	5557.9 SC	5561.0 ME CORE	1 MISS	1 ING HE	4.0 ERE	1.0	999	90	999	999	9	9	С	C		3	3	3	
1	5562.6	5565.5 CURS IN	7 ORGA	1 LAM 1	.0 N SS,SU	9999 BHEDRA	999 L?, OPEN	0 V FRAC	999	999	9	9	С	Ρ		2	2	4	
1	5567.1 MU	5570.0 JDDY SIT	1 TST,	1 FRAC M	.4 1AY BE A	0.2 S MUCH	999 1 ' LONG	90 SER	999	999	9	9	С	С		7	7	6	
1	5578.8	5580.0	1	1	1.9	0.2	999	90	999	999	9	9	С	С		1	3	3	

-A13-

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	5583.6	5584.5	3	10	6.4	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5587.0	5590.0	3	2	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5596.9	5599.0 מותדעדתא	S ST. FR	3 ACS TEI	3.6 RM WITHI	0.5 N LTTH	999 AND OI	75 17 OF C	999	99 9	9 MM	9	С	C		1	1	6	
1	5602.0	5601.0	6 DOWNI			9999	999 LISHED	45 NOT RE	999 EAL SMOOT	999 999	9	+	999	9	9	2	2	7	
1	5606.2	5605.0 WARM IN	S	3 3 3 SS.TI	·3 ERMS AT	0.4 GRAY S	999 5 CONTA	90 ACTS	999	999	9	9	С	С		6	6	3	
1	5607.9 C	5607.0 ROSSES I	1 HORIZ	1 FRAC	.9 BELOW	0.4 HORIZ	999 FRAC AF	90 PPEARS	999 OLDER	999	9	9	С	С		1	1	3	
1	5608.6 I	5607.5 N PLACES	7 S WID	1 FH IS 1	.0' NEGLIGIE	0.2 SLE AND	999 NO FII	0 LL IS V	999 7ISIBLE	999	9	9	С	Р		2	2	3	
1	560 9.7	5608.5 5-90DEG	1 .DIP,	1 THIS 1	.4 FRAC OFF	0.2 SET (dh	999 ORIZ FF	90 RAC BEI	999 .0W	999	9	9	С	С		1	1	3	
1	5610.0 F	5609.0 RAC FOL	7 LOWS 1	1 MUDST 1	.0 LAM,FRAC	0.5 : IS VE	999 RY TIGH	0 HT AND	999 FILL IS	999 INVISIBI	9 JE IN PI	9 LACES	С	Р		2	2	4	
1	5611.0	5610.0	2	1	.0	9999	999	0	999	999	9	-	С	Р	S	2	2	4	
1	5611.2	ATCHY F: 5610.2	1 1	XSTALS	ARE VER	Y FINE 0.3	, VERY 999	BUMPY 90	PLANE,SL 999	KS ACROS 999	SS MOST 9	OF PLAN 9	C VE	с		1	1	3	
1	5611.7	5610.5	2 OFF: 7	אד אד 1 מתקים	A MODSI .0		999 TACES T	0 7 T T T T T C	999 TNVISTR	999 1 F	9	9	с	Ρ		2	2	3	
1	5615.5	5615.5		ם בבטר. 1 נידע סבר	.9 2 BELOW	0.5	999 פייסדגיד	90 90	999	999 8 970 TK	9	9	С	С		3	2	4	
1	5616.2	5616.0	2 VIG 1017	1 1 1	2 DELON .0 TTH @ TH	9999	999 OPGA LZ		999 97.F SLKS	999 NO OFFSE	9 יידי סדי ידי	+ VDF 1/254	999	9	9	2	3	4	
1	5617.8 ¹	5618.0	1 T BARI		.7 IMS CORF	0.5	999 TONABLE	90 8 WIDTH	999	999	9	9	c	С		2	2	3	
1	5621.8	5622.0	3	4	.2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5623.7 S	5623.5 UBTLE SI	2 LKS	1	.0	9999	999	20	999	999	9	-	999	9	9	2	2	4	
1	5624.7 D	5627.0 OWNDIP 9	2 SLKS.	1 SUBTLI	.0 E SLKS	9999	999	50	999	999	9	-	999	9	9	2	2	4	
1	5628.3 T	5630.5 OP TERM	1 @ PAF	1 RTLY PO	1.2 DLISHED	0.6 MUDST	999 PARTING	90 G	999	999	9	9	С	C		5	3	3	
1	5633.0	5635.0		1	1.4	0.6	999	90	999	999	9	9	С	С		7	3	3	
1	5634.8 M	5637.0	0NLY 1 71.47777	AFEW 1 DTOFI	TENTHS 1.2 PAC ABOV	LONGER 0.2	, SEPARA 999	90	999	999 999	9 9	9 9	с	С		3	1	3	
1	5636.0	5638.0	3			້9999 1151 m	999	99 СПОТИБ	999 95633 0	999	9	9 55 /MID 50	999	9	9	2	2	7	
1	5638.6	5640.5	3 3	JANE SI	LKS PARA	99999 99999	999	99	999 999	999	9 9	9 9	999	9	9	9	9	7	
1	5639.3	5641.5	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5644.8	5646.5	S	3	.5	0.1	999	80	999	999	9	9	С	С		1	1	6	
1	5646.5	5647.0	3	6	1.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5647.9	5648.0	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5648.3 A	5648.5 LL FROM	1 MADSE	1 EN'S NO	.9 DTES	0.2	999	90	999	999	9	9	С	С		3	3	6	

-A14-

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	5650.0	5650.0	 S	3	.4	0.1	999	90	999	999	9	9	с	сС		1	1	6	
1	5650.7	5650.5	3	4	1.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5652.1	5652.0	s	3	.6	0.1	999	90	99 9	999	9	9	С	С		1	1	6	
1	5653.5	5653.5	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5655.8	5657.0	1	1	.1	0.1	999	90	999	999	9	9	С	С		3	3	4	
1	5658.5	5659.5	3	4	.0	9999	999	9 9	999	999	9	9	999	9	9	9	9	7	
1	5661.0	5662.0	1	1	.6	0.4	999	90	999	999	9	9	С	С		1	1	6	
1	AL 5670.5	L FROM 1 5671.5	1ADSEN 3	1'S NO1 6	res .0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5677.2	5677.5	s	3	1.5	0.2	999	90	999	999	9	9	С	С		1	1	6	
1	5692.0	5697.0	1	1	1.6	0.6	999	90	999	999	9	9	С	С		3	5	4	
1	5693.8	LOSE TO 5698.0	EDGE	OF COF	ε .2	0.3	999	0	999	999	9	9	С	С		1	1	3	
1	м 5694.2	AX. WID 5698.5	ен оғ З	20	JNK IS (9.2).1' 9999	999	99	999	999 <i>`</i>	9	9	999	9	9	9	9	7	
1	5704.0	5707.0	1	1	1.6	0.4	999	90	999	999	9	9	С	С		3	3	3	
1	5707.0	5710.0	1	1	.1	0.1	999	90	999	999	9	9	С	С		3	3	3	
1	5710.4	5713.5		5LAB FA	ACE .8	0.8	999	90	999	999	9	9	С	С		3	1	3	
1	5712.0	5715.0	1 MADS	SEN'S N	NOTES,AI	L RUBB	LE NOW 999	90	999	999	9	9	с	С		1	1	3	
1	5730.4	5733.0	I ON C	DNE SII 1	DE OF CC 6.0	ORE 3.6	999	90	999	999	9	9	С	Ρ	S	3	1	3	т
1	F1 5736.9	RACTURE 5739.5	DATA (3	(WIDTH) 13	PRIMAF 5.3	≀ILY FR 9999	OM MADS 999	SEN'S N 99	NOTES,STF 999	ANDED, OF	PEN IN F 9	LACES, 9	7UGGY 999	FILL 9	9	9	9	7	
1	5739.7	5742.5	1	2	1.2	0.4	999	90	999	999	9	9	с	с		3	1	6	
1	FI 5745.8	ROM MADS 5749.0	SEN'S 2	NOTES 1	.0	9999	999	5	999	999	9	-	999	9	9	2	2	6	
1	ص 5750.2	CARB LAN 5753.0	1 IN 5 3	SILTST 1	.0	9999	999	20	999	999	9	9	999	9	9	2	2	7	
1	5750.6	5753.5	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5752.3	5755.5	2	1	.1	9999	999	15	999	999	9	-	с	P	S	2	2	4	
1	SL 5754.1	IDE AND 5757.0	DUMP 7	FILL, 1	OPEN FF	AC,BUM 1.0	PY PLAN 999	IE BUT 0	REGULAR 999	RIDGES,S 999	STYLOLII 9	E??FRA: 9	C TYPE C	l? C		2	2	3	
1	VEH 5754.8	RY IRRE0 5758.0	SULAR 3	PLANE 3	FOLLOWS	5 CONTA 9999	CT BETW 999	ieen sa 99	5 & SILTS 999	ST,WIDE N 999	ARIATIC 9	NS IN V 9	∛IDTH 9 9 9	9	9	9	9	7	
1	5757.0	5760.0	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5767.8	5771.0	3	3	.4	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5772.9	5775.0	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	

-A15-

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	5774.3 MO	5776.5		 1 .דו. כידו	.7 2005 01		999	90 .E INCH	999 4 ADART 1	999	9 TO PETA	9 1. BELOW	с г	c		1	1	6	
1	5774.7	5777.0	P	1 45 DE(9999 AVE 110	999	99	999	999	9	9	999	9	9	9	9	6	
1	5775.4	5777.5	3	1	.3	9999	999	45	999	999	9	9	999	9	9	2	2	7	
1	5777.0	5779.0	1	1	.8	0.2	999	90	999	999	9	9	с	с		4	5	3	
1	5785.5	5786.5	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5789.1	5790.0	3	11	4.9	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5794.0 MOS	5793.0 STLY 2 I	1 PARALI	1 SEL STI	.2 RANDS	0.1	999	90	999	999	9	9	С	С		1	1	6	
1	5795.0	5794.0	3	11	3.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5798.0 ORGA	5797.0 A. AND (D CAL. H	1 PILL MO	2.9 OSTLY CO	9999 OMPLETE	999 Some (90 Gaps,Mu	999 JLTISTRAN	999 NDED,STRI	9 IKE W/10	9 DEG FRA	CB AC @58	C 11.4		7	7	3	т
1	5802.6 SLKS	5804.5	3 TTO DO	1 WNDTP	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5810.4 SLK	5812.5 5 40DEG	2 . TO I		.0 P.SMALL	9999 PATCHE	999 S OF CA	30 ALCITE	999	999	9	-	C	Ρ		2	2	4	
1	5811.4	5813.0	1	1	1.5	0.2	999	90	999	999	9	9	С	С		5	3	4	
1	5811.7 SLII	5813.5 DE & DUI	2 MP FII	1 L, 451	.0 DEG BETV	9999 WEEN EX	999 T FRAC	99 STRIKI	999 E AND THI	999 IS SLK BE	9 EAR,VERY	_ IRREG	C PLANE	P	S	2	2	5	
1	5815.8	5817.0	3	3	. 4	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5817.2 TWO	5818.0 D PARALI	1 LEL FF	2 RACS A	1.0 PPROX. 1	0.1 2"APART	999 STRIKE	90 ES PARA	999 ALLEL TO	999 PETALS B	9 BELOW	9	С	С		1	1	3	
1	5818.1 IN	5819.0 IATION 2	P	2 5 50 D	.2 EGCON	9999 VEX UP	999	99	999	999	9	9	999	9	9	9	9	9	
1	5823.5 IN	5825.5 IATION A	P ANGLE	1 60 DE	.1 GCONS	9999 TANT DI	999 P	99	999	999	9	9	999	9	9	9	9	9	
1	5826.2 FRA	5828.0 AC FOLL	2 DW SF1	1 F SED.	.0 SWIRL,	9999 SLKS DC	999 WNDIP	30	999	999	9	-	999	9	9	2	2	4	
1	5841.7	5841.5	1 N TS	1 MARKET	.8 D INCOR	0.5 DECTIV	999 SUOULD	80	999 41 8 NOT	999 5841 5	9	9	С	С		3	3	3	Т
1	5845.0	5845.0	1	1	.1	0.1	999	90	999	999	9	9	С	С		3	3	7	
1	SII 5845.5	LTY MUD: 5845.5	ST,APF 3	PROX D	EPTH DI .0	FFICULT 9999	999 999	1D 99	999	999	9	9	999	9	9	9	9	7	
1	5848.7	5848.5	3	3	.3	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5850.6	5850.5	3	3	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5852.0	5852.0	3	4	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5862.5	5861.5	3	4	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5863.9 OP	5863.0 EN FRAC	1 . STRAN	1 NDED P	1.8 OSSIBLY	7.0 TWO EP	999 TSODES	90 OF CAI	999 LCITE/WII	999 OTH FROM	9 MADSEN	9	С	Р	S	1	2	3	
1	5866.6 OP	5865.5 EN-WIDT	1 H FR M	1 MADSEN	4.2 SAMPLE	7.0 OUT ON	999 ILY .4'1	90 LONG,F	999 ILL AS AI	999 BOVE, MAY	9 BE RELA	9 ATED TO	C FRAC	P ABOVE?	S	7	1	3	S
1	5871.7 FR	5870.5 ACS PAR	S ALLEL	3 TO FR	.2 AC@5866	0.2	999	90	999	999	9	9	С	с		1	1	3	

-A16-

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC 5 HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	5872.7	5871.5	1	1	.6	1.0	999	85	999	999	9	9	с	С		1	1	3	
1	5875.0	5875.5	1	1	.9	0.2	999 OVE UD	90 596	999	999	9	9	с	С		3	3	3	
1	5886.6	5887.0	3	⁻ ARALI	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5887.3	5887.5	1	1	.4	0.5	999 1 ND CET	90	999	999	9	9	с	с		2	1	4	
1	5888.6	5889.0			1.0		999	90	999	999	9	9	с	с		3	3	5	
1	5890.4	5890.5		SOME 1	$\begin{array}{c} \text{VERT CAP} \\ 1.0 \\ \end{array}$	5.0	999	85	999	999	9	9	с	Р	S	3	2	5	
1	5892.4	5892.5	$\frac{1}{1}$			0.2	999	MADSEN 90	999	999	9	9	с	с		3	1	5	
1	5896.9	5897.0			RANDED, I	PARALLE	999	75	999.	4 999	9	9	с	Ρ	S	2	6	3	
1	5900.3	5900.5	10 FRA	ACS AF	.7	0.2	.4,VUGG	90	-WIDTH E 999	ROM MADS	SEN 9	9	C	C		3	5	4	
1	1N 5904.4	5905.5	1	MUD A	AND SILT,	BOTTER, 0.1	M AT 0. 999	90	999	9999 ;,OPEN,FJ	9 9	9 9	C C	С		5	3	2	
1	5916.0	5917.0	3	2	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5917.0	5918.0	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5921.1	5921.0	3	2	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5926.4	5925.5	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5937.6	5936.5	1	1	. 4	0.2	999	90	999	999	9	9	С	с		5	5	2	
1	5973.6	5970.5	3	7	2.2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5978.0	7976.0	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5986.4	5979.5	3	2	.3	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5988.3	5987.5	1	1	.2	0.1	999	85	999	999	9	9	D	С		3	3	5	
1	5990.4	5988.5	3	2	.2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	5991.4	5989.5	1	1	1.9	4.0	999	90	999	999	9	9	с	Ρ	S	1	3	1	
1	5996.0	5994.0			1.5	0.4	999	90	999	999	9	9	D	С		1	1	3	х
1	6002.1	5998.0			.7	1.0	999	80	999	999	9	9	с	С		2	1	3	
1	6003.0	5999.0	З	1 STRA	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6007.7	6003.5	1	1	2.8	3.8	999	85	999	999	9	9	QC	Р	S	1	1	3	FT
1	0PEN 6011.5	FRAC-W. 6007.5	10TH F 3	-ROM N 4	ADSEN	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6016.0	6012.0	3	5	1.2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6021.5	6017.5	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	

-A17-

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	6022.4	6018.5	3	7	2.6	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6033.0	6029.0	1	1	1.1	3.0	999	80	999	999	9	9	QD	Р	S	9	1	3	XS
1	6034.3	6030.5	3 3	FROM I	MADSEN .0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	SLIC 6035.7	CK BEAR	ING RC		PARALL	EL TO F 8.0	RAC STR 999	PO 90	16033.0 999	AND 6035 999	.7 9	9	QCD	Р	S	1	5	3	
1	CURV 6039.1	7ED PLAN 6035.0	1Е, ТОР З	PTERM (6	USFT SE	D DEFOR 9999	FEA W/ 999	SLKS 1 99	N DIFF 999	DIRECTION 999	NS, OPEN- 9	-WIDTH 9	FR MAD 999) 9	9	9	9	7	
1	6047.2	6043.0	1	1	. 4	0.8	999	90	999	999	9	9	DCB	Р		1	1	3	TS
1	VUGS 6048.4	5 IN F11 6044.5	L,CAI	LC AND	BARITE	SEEN W	999	80	999	999	9	9	DC	Р		1	1	4	
1	SOME 6050.7	E VUGS H 6046.5	3UT MC 1	OSTLY (1	COMPLET: .3	E FILL 2.0	999	90	999	999	9	9	CD	Р		1	1	3	
1	VUG0 6054.9	GY FILL 6051.0	3	2	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6056.3	6052.5	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6060.0	6056.0	6	1	.1	9999	999	30	999	999	9	+	С	Р	s	2	2	7	
1	POLIS 6075.7	SHED,DI9 6071.5	P AZIN 1	10TH AI 1	ND SLK A	AZIMUTH 11.0	AT AN 999	ANGLE 80	OF APPR 999	OX. 50DE0 999	G.,MUDSI 9	COALY 9	с	Р	s	2	2	2	
1	OPEN 6081.5	FRAC-W: 6077.5	IDTH E	rom m 1	ADSEN 1.1	0.6	999	90	999	999	9	9	D	С		1	1	5	
1	MIXEI 6082.5	0 MUDST 6078.5	& SII 8	LTST 2	.1	0.5	999	10	999	999	9	9	BD	с		2	3	5	
1	FILL 6083.0	PARTIA 6079.0	LON E 3	EXPOSEI 3	D PLANE .9	PLANES, 9999	NOT TH 999	IRU COF 99	≀E 999	999	9	9	999	9	9	9	9	7	
1	DEWA1 6084.4	FERING E 6081.0	PIPE A	ABOVE 1	.1	0.1	999	90	999	999	9	9	с	с		1	1	5	
1	6086.1	6082.5	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6088.7	6085.0	1	1	.4	0.2	999	90	999	999	9	9	с	с		1	3	3	
1	6100.2	6096.0	1	1	.9	2.0	999	90	999	999	9	9	с	Ρ		1	1	6	F
1	VUGGY 6106.9	Y FILL 6103.0	1	1	1.1	0.4	999	90	999	999	9	9	С	с		1	1	6	
1	6111.5	6107.5	3	7	1.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	DEWA: 6116.1	FERING I 6112.0	PIPE A	ABOVE 2	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6117.9	6114.0	1	1	.6	0.4	999	90	999	999	9	9	С	С		1	1	5	
1	MUDD 6119.1	Y SS 6115.0	2	1	.0	9999	999	5	999	999	9	_	С	Р	S	2	2	6	
1	OCCUI 6123.3	RS AT MU 6119.0	JDST I 3	LAM 2	.1	9999	999	99	999	999	9	9	999	9	9	9	9	7	
-	6124.3	6120.0	- 1	-	. 4	0.8	999	90	999	999	9	9	D	P	-	1	1	3	
-	VUGG	Y FILL, 6120.5	ONLY 1	SEEN	ON ONE	SIDE OF 0.3	CORE	99	999	999	9	9	с	с		2	2	3	
-	JUST 6125.3	BARELY 6121.5	SKIMI 3		RE .0	9999	999	99	999	999	9	9	999	9	9	9	9	7	

-A18-

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	6126.5	6122.5	3	14	2.5	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6127.1	6123.0	3	2	.1	9999	999	30	999	999	9 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190	9 DDOVEN	C	Ρ	S	9	9	7	
1	6129.0	6125.0	8 8	6	1.5	6.0	999	90	999	999	9 9	9	DC	Р		1	1	5	
1	BRE0 6131.1	C SS,SS 6127.0	& MUI 8	O MIX (6	0.1-6MM, 1.7	SED FE	ATURES 999	W/CAL8 90	DIC, HOR	I TO VEF 999	YTI,PARI 9	-COMP 9	DC	Р		1	2	0	x
-	DIP	0-90,PA	ART- (COMP F	ILL,0.1-	-3MM, MC	TION ON	ONE I	FRAC @BOT	T CONTEN	4P W/LIJ	THIFICAT	FION	-	0	-	~	Č,	
T	DOM	NDIP SLF	∠ KS,PL₽	ANAR, 1	.U POLISHEI)	999	12	999	999	9	-	999	9	9	2	2	U	
1	6133.2 DOWN	6129.0 NDIP SLE	6 (S,POI	1 LISHED	.0 VERY PI	9999 ANAR	999	10	999	999	9	+	999	9	9	2	2	7	
1	6134.4	6130.5	3	5	. 4	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6134.9	6131.0	8	6	.9	5.0	999	90	999	999	9	9	DC	С		1	1	6	
1	6137.0	6133.0	3 3	1.1-5M	M,DIP 40 .0	99999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6143.6	6140.5	8		.0	2.0	999 IN 55	10	999	999	9	9	DC	С		2	2	3	
1	6146.0	6143.0	3	3	.6	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6146.6	6143.5	8	6	2.0	0.5	999	80	999	999	9	9	DCQ	С		1	3	6	XTS
1	MUDD1 6149.3	6146.0	8 8	0-80 ; 6	2.0	2.0	100 BED 999	90 90	999	1-0.5MM, 999	9	9	DC	C		3	1	6	
1	MUDDY 6149.6	(SILTS) 6146.5	F, DIF 3	2 0-90 1	,0.2-2MM .0	і, вот т 9999	ERM @TY 999	PE 6 (99	(6151.1) 999	999	9	9	999	9	9	9	9	7	
1	6151.1	6148.0	6	1	.2	9999	999	35	999	999	9	+	D	Р		2	2	7	
1	WEB 1 6151.2	TYPE FRA 6148.5	ACS CC 3	ONC 1"2 3	ABOVE TH	IIS FRA 9999	C,OPEN 999	FRAC,I 99	NOWNDIP S 999	LKS,POLI 999	SHED 9	9	999	9	9	9	9	7	
1	6151.8	6149.0	8	4	1.1	0.2	999	90	999	999	9	9	D	с		1	1	0	
1	OCCAS	SIONAL W	VEB TY	(PE FR)	ACS,0-90	, SOME	FOLLOW	BEDDIN	1G 999	999	٩	٩	п	C		3	3	٥	
-	0155.5	0150.5	0	-	• •	1.0		10			, ,	, ,	2	C G		5	2	6	
T	6154.2 MUDDY	6151.0 (SILTS]	8 Г	T	.0	1.0	999	10	999	999	9	9	D	C		2	2	6	
1	6158.5	6155.5	3	1	.5	9999	999	70	999	999	9	9	999	9	9	2	2	7	
1	6159.0	6156.0	3	10	3.2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6164.8	6162.0	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6165.1	6162.0	3	1	.1	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6173.2	6170.0	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6174.5	6171.5	3	2	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6178.9	6176.0	2	1	.0	9999	999	30	999	999	9	-	999	9	9	2	2	4	
1	6187.0	6184.0	3	4	.2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6188.3 (1)OE	6185.5 PEN FRAC	8 2,0.1-	6 -2MM, 1	1.6 DIP 0-50	2.0 ,SFT S	999 ED DEFO	50 RMATIC	999 N PRESEN	999 T,BARITH	9 E XRAYEI	9	BD	Ρ		3	3	4	Х

-A19-

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	6189.9	6187.0	2	1	.0	9999	999	20	999	999	9	-	CD	 Р	S	2	2	4	
1	6190.2	6187.5	8 DT T E C	1 פייים דאו	.3	3.0	999	60 FBAC	999	999	9	9	DC	Р		2	2	3	х
1	6190.5	6188.0	8	1	.3	3.0	999	60	999	999	9	9	DC	Р		2	2	3	
1	6190.8	6188.5	2 דיויד דייד	1 	.0	9999 EDAC L	999		999 תוש	999	9		D	Ρ		2	2	4	
1	6192.6	6189.5	1	1	.9	0.6	999	80 80	999	999	9	9	D	С		3	5	3	
1	6193.0	6190.0	2	1	.0	9999	999	0	999	999	9	-	BD	Р		2	2	4	x
1	6193.9	6191.0		1	.0,F1LL .8	0.2	999 999	90	999	999	9 9	9 9	C	C		5	3	4	
1	6195.2	6192.0		1		0.4	999 999	80	999	999	9	9	D	с		2	2	0	
1	6195.4	6192.5	2	1 1	E 2 BEL	0W, INTE 9999	999		999 999	999	9	-	999	9	9	2	2	0	
1	NO . 6195.4	6192.5		JVE MA	Y BE OF 1.5	FSET-NC 0.3	999	80 80	999	999	9	9	C	с		5	5	3	
1	6197.1	ANDED, S	$\frac{1}{2}$	50D OI 1	FF STR	0F' FRAC 9999	999 999	2, MAYB. 5	E SOME D. 999	999	9 9	- Ellap13	D D	AC P		2	2	4	
1	OPE 6197.7	N FRAC 6194.5	2	1	.0	9999	999	10	999	999	9		999	9	9	2	2	4	
1	SLK 6197.7	S ACROS 6194.5	S MOS'. 8		HIS BUM	PY PLAN 2.0	1E 999	75	999	999	9	9	DC	с		5	3	6	
1	ТОР 6201.5	(d6197. 6198.5	7 SHE2 3	AR,DIP 6	50-75, 1.0	0.1-2MA 9999	1 999	99	999	999	9	9	999	9	9	9	9	7	
1	6203.5	6200.5	2	1	.1_	9999	999	20	999	999	9	+	с	Р		2	2	4	
1	۷ER 6206.9	6204.0	R,OPEI 3	1 PRAC	,SLKS I .0	N 2 DIE 9999	999	30	999	999	9	9	CD	Ρ		9	9	7	
1	6210.0	6207.0	3	2	. 2	9999	999	10	999	999	9	9	D	Ρ		9	9	7	
1	NO 6217.5	6214.5	⊻Е ID З	ON TH. 2	E DICKI	те 9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6219.8	6217.0	3	1	.0	9999	999	5	999	999	9	9	CD	Р		2	3	7	
1	6225.0	6221.5	3	4	.6	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6233.8	6230.0	3	6	.7	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6242.0	6238.0	3	2	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6242.9	6239.0		2	. 2	0.3	999	30	999	999	9	9	D	C		3	3	6	
1	6243.2	6239.5	3	3 J LAMS	1ND1V1 .2	9999	999	99	999	999	9 9	9	999 999	9 9	9	9	9	7	
1	6243.2	6239.5	3	1	.0	9999	999	0	999	999	9	9	В	Ρ		9	9	7	
1	6248.5	6244.5	$\frac{1}{2}$	PATCH 1	ON ONE	9999	999	20	999 10 ON BAI	999 999	9	-	999	9	9	2	3	4	
1	A'l' 6249.2	ONE EDG 6245.0	ы LAM 1	ENDS 1	IN SS A	10.0	999	90	999	999	9	9	QBC	P	S	5	2	3	х
1	0PE 6259.0	N FRAC, 6254.0	BARITI 3	ビ(XRAY 11) AND P 6.0	USS. DI 9999	ICKITE, 999	FINE 99	QTZ CRYS 999	PALS MOS' 999	TLY,MINC 9	лк CALC 9	,WIDT 999	н EST. 9	9	9	9	7	

-A20-

NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	F'RAC WIDTH	FRAC STRIKE	DIP	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	6269.2	6264.0	3	14	2.8	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6274.7	6269.5	3	4	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6275.5	6270.5	3	4	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6278.0	6273.0	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6279.4	6274.5	3	3	.2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6289.0	6284.0	3	3	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6300.7	6296.0	3	7	3.6	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6311.0	6307.0	3	2	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6312.4	6310.5	8	6	.3	4.0	999	90	999	999	9	9	DC	С		3	3	7	
1	6325.5	6322.5	3 3	MUDST 1	.0	9999	.1-4mm, 999	99	999	999	9 9	9 9	л 999	9	9	9	9	7	
1	6328.0	6325.0	3	7	1.1	999 9	999	99	999	999	9	9	999	9	9	9	9	7	
1	6328.5	6325.5	7	1	.0	5.0	999	10	999	999	9	9	С	С		2	2	7	
1	6358.7	6353.5	1	, ASSO 1 CVINC	.3	0.8	999	85	999	999	9	9	С	С		5	2	3	
1	6365.7	6360.5	1	$\frac{5 \text{ MS}}{1}$	1.1	0.3	999	90	999	999	9	9	С	С		1	1	3	
1	6367.5	6362.5	3	4	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6373.0	6368.0	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6376.6	6370.5	3	8	2.5	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6392.3	6387.5	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6395.3	6389.5	3	4	.1	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6396.5	6390.5	7 		.0	9999	999	10	999 BAG (65304	999	9	9	в	Р		2	2	3	
1	6396.6	6390.5			.2		999	90	999	999	9	9	D	С		3	3	3	
1	6396.8	6391.0	7 7	I	.0 .0	9999 9999	999 ADALLET	10	999 BNG (6204	999	9	9	в	Ρ		2	2	3	
1	6397.4	6391.5	3	IPE NO	.2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6399.0	6394.0	1	1	2.9	0.2	999	90	999	999	9	9	С	С		1	1	2	
1	6406.6	6403.0	3	5	1.8	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6410.7	6406.5	3	3	.2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6414.1	6410.5	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6418.0	6414.0	3	5	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	6430.4	6429.0	2	1	.0	9999	999	10	999	999	9	_	c	<u></u> Р	S	2	2	6	
1	MUD 6465.0	6462.0	ST SLF 3	I 1	.0	99999	ANE 999	99	999	999	9	9	999	9	9	9	9	7	
1	6490.6	6487.5	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6501.4	6499.5	2	1	.0	9999	5	10	95	95	9	-	999	9	9	2	2	4	
1	OPE 6525.1	N FRAC, 6523.0	ROUGH 1	I PLANI 1	е .7	0.2	290	90	999	999	9	9	с	С		2	2	3	
1	FRA 6556.0	C JUST (6554.0	BARELY 3	SKIMS 3	S CORE,V	VIDTH Q 9999	UESTION 999	NABLE 99	999	999	9	9	999	9	9	9	9	7	
1	6557.5	6556.0	3	3	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6561.0	6561.0	3	6	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6584.3	6588.0	7	1	.0	9999	999	0	999	999	9	9	С	Р		2	2	4	
1	OPE 6584.7	N FRAC, 6588.5	PARTIA 7	LLY FO	DLLOWS N .2	UDST I 1.4	AM,FILI 999	J PATCI 30	HY 999	999	9	9	С	Р		2	3	4	
1	MUL 6584.9	FIPLE S 6589.0	TRANDS 3	5 FOLLO 2	OWING MU	DST LA 9999	MINATIO 999	ONS,0.1 99	1-1.4MM,H 999	FILL VUGO 999	9 9	9	999	9	9	9	9	7	
1	6588.5	6592.5	3	5	. 4	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6593.0	6597.0	3	4	. 2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6594.0	6598.0	3	2	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6595.6	6499.0	3	2	. 0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6597.5	6600.5	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6603.4	6606.0	7	1	. 0	2.0	999	0	999	999	9	9	С	С		2	2	8	
1	VE 6604.0	RY DISC 6606.5	ONTINU 3	JOUS RO 3	DUGHLY 4	STRAN 9999	IDS,0.1- 999	-2.0 99	999	999	9	9	999	9	9	9	9	7	
1	6606.5	6608.5	3	3	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6609.0	6611.0	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6613.7	6614.5	3	2	.1	2.0	99 9	0	999	999	9	9	999	9	9	9	9	7	
1	6613.7	6614.5	7 7	SHED 1	.1	2.0	999	0	999	999	9	9	С	с		3	3	7	
1	6623.7	6620.5	1', FRAC 3	2 ZONE	IS CONF	99999	ю БГГН, 999	, (3)ST 99	999	999	9 9	END-00. 9	999	9	9	2	2	7	
1	6630.2	6627.0	2	1	.0	9999	999	0	999	999	9	-	999	9	9	2	2	4	
1	SLK: 6630.7	S COVER 6627.5	MOST 2	OF PLA 1	ANE .0	9999	999	0	999	999	9	+	999	9	9	2	2	4	
1	6633.9	6631.0	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6634.5	6631.5	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6634.6	6631.6	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	

-A22-

NO	CORE DEPTH	LOG DEPTH	FRAC	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL (AMOUNT	TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	6637.4	6634.5	3	3	.6	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6661.5	6658.5	7	3	.6	2.0	999	0	999	999	9	9	CQ	Р	S	2	2	5	
1	PARA 6662.5	ALLEL TO 6659.5	BEDD. 1	ING 2	COMP-PA	RT OPE 0.1	N , ZONE 999	E CONFII 90	NED TO L 999	ITH,STRA 999	NDED,0. 9	1-2.0+ 9	, SOME C	DISCONT C	•	3	3	3	
1	TWO 6662.7	PARALLE 6659.7	L FRAG	CS SAN 1	DSTONE .0	IS PRE 9999	DOMINAN 999	1T LITH 20	OLOGY 999	999	S	+	с	P	S	2	2	5	F
1	SLIC 6663.0	CKENCRYS 6660.0	TS,IRI P	REGULA 3	R PLANE	, FRAC 9999	@6662.5 999	5 INTER 35	SECTS TH 999	IIS FRAC 999	W/NO AP 9	PARENT 9	OFFSE 999	T 9	9	9	9	3	
1	INIA 6665.0	TION AN	GLES 3	35DEG 1	CONSTAN	T DIP, 9999	,PARALI	EL FRA	C @6662.	5 & 60 E 999	EG. OFF	'SLK BI 9	EARING 999	; @6662." 9	7 9	9	9	7	
-	6680 4	6677 5	2	-	0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6684 0	6681 0	2	2	.0	0000	000	00	000	999	9	0	000	9	0	0	9	' 7	
1	6600 0	0001.0	2	4	.0	9999	999		999	999	9	9	<i>,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9	3	3	9	r c	
T	6688.0 INJ	EATION A	P NGLE !	50 DEG	const	ANT DI	999 P	99	999	999	9	9	999	9	9	9	9	ю _	
1	6695.9	6693.0	3	4	.5	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6710.9	6709.0	1	1	2.7	0.5	330P	90	999P	999P	9	9	С	С		7	1	3	
1	6712.4	4C CROSS 6710.5	ES THI 4	E TWO	SHEAR F	84CS D 9999	290P	40	w,ORIENI 20P	ATION FR 110P	S S	iomag +	DO	Р		3	2	3	XS
1	NIE	ETHER ST	RIKE	ORJSLK	S ARE P	ARAL.T	O FRAC	£6710.9	-NO APP	OFFSET,I	R QTZ S	EEN IN	XRAY,	ORIEN-PA	ALEO	2	2		
T	0/12.8 VEF	6/11.U RY PLANA	Z R.SLI	CKS CU	RVED.SL	9999 ICKENC	35 RYSTS.C	DRIENT '	125 FROM PAI	EOMAG, NC	9) APP. O	- FFSET (C DF TYF	Р РЕ 1	S	2	2	4	
1	6715.0	6713.0	3	1	.0	9999	999	99	999	999	9	9	999	- 9	9	9	9	7	
1	6715.5	6713.5	1	1	1.2	0.2	999	90	999	999	9	9	С	С		2	2	4	S
1	FRAC 6718.1	C IS OFF 6716.0	SET A	F COAL 1	Y SHARD	,FILL 9999	LOOKS F 999	PATCHY (99	ON EXPOS 999	ED PLANE 999	9	9	999	9	9	9	9	7	
1	6718.3	6716.5	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6719.0	6717.0	3	2	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6743.0	6741.0	3	2	. 0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6748 0	6746 0	3	- २	0	9999	999	99	999	999	9	Q	999	9	Q	9	9	7	
1	6740 2	6747 5	2	2		0000	900	00	000	000	9	0	000	<u> </u>	0	۔ م	0	, 7	
T	0749.5	0/4/.5		3	.0	9999	999	33	333	333	9	9		9	9	2	,	,	
1	6759.7 SOME	6757.5 E APPARE	D NT STH	1 RIKE/S	2.0 LIP MOT	9999 ION	999	99	999	999	S	-	999	9	9	9	9	9	
1	6762.7	6760.5	3	3	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6764.2	6762.0	3	5	.5	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6776.7	6774.5	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6789.5	6787.5	3	2	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6790.2	6788.0	3	2	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
1	6797.7 MUDI	6795.5 Y SILTS	7 T, DIE	1 P 0-25	.1	1.0	999	25	999	999	9	9	С	С		2	3	6	

-A23-

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
1	6798.2 MUT	6796.0	2 577 SI		.2 CRVSTS	4.0	999	50 50	999	999	9	_	c	P	S	2	2	6	
1	7881.0	7879.0	P		.2	9999	272	40	999	999	9	9	999	9	9	9	9	3	
1	7881.6	7879.5	ANGLE P ANGLE	30 DE(1 50 DE(GCONV .1 GCONV	EX UP 9999 FX UD	999	99	999	999	9	9	999	9	9	9	9	3	
1	7881.7	7879.7	P		.1	9999	267	50	999	999	9	9	999	9	9	9	9	3	
1	7882.8	7880.5	P		.1	9999	274	50	999	999	9	9	999	9	9	9	9	3	
1	7884.0	7882.0		45 DE(1	GCONV .1	9999	274	40	999	999	9	9	999	9	9	9	9	3	
1	7884.1	7882.1		25 DEC 1		9999	999	99	999	999	9	9	999	9	9	9	9	3	
1	7884.9	7883.0		40 DEC 1		9999 9999	999	99	999	999	9	9	999	9	9	9	9	3	
1	7886.0	7884.0	P	15 DEC 1	GCONV .0	9999	999	99	999	999	9	9	999	9	9	9	9	3	
1	7886.3	7884.5		20 DEC 1	GCONV .0	9999	999	99	999	999	9	9	999	9	9	9	9	3	
1	7886.6	7884.6	P	40 DE0	GCONV .0	EX UP 9999	999	99	999	999	9	9	999	9	9	9	9	3	
1	7892.1	7890.0	P	35 DE0	GIRRE .1	9999	271	80	999	999	9	9	999	9	9	9	9	3	
1	7896.9	7895.0	P	65 DE0	G?? .1	9999	281	80	999	999	9	9	999	9	9	9	9	3	
1	۱۱ 7903.7	7902.0	ANGLE 1	45 DE0 1	GCONV .9	EX UP 0.5	280	90	999	999	9	9	Q	С		2	1	3	Т
1	7903.7	7902.0	1	1	.9	0.2	295	90	999	999	9	9	Q	С		1	1	3	Т
1	7904.1	7902.0	ARATE. P	LY FROM	M FRAC	ABOVE E 9999	311	60	ANGE IN 999	999	1LL PATO 9	9	999	SD РЦ. 9	9	9	9	3	
1	7913.0	ATION A 7910.0	NGLE :	50 DEG	CONST .0	AN'I' DIE 9999	999	0	999	35	9	9	Q	Ρ	S	2	2	7	S
1	SUE 7916.1	7913.0	QTZ II P	N PATCI 1	HES ON .1	9999	288	R PLAN 30	E,OPEN F 999	999	9	9	999	9	9	9	9	3	
1	IN] 7916.5	ATION A 7913.5	NGLE P	40 DEG 1	CONCA .1	VE UP 9999	288	30	999	999	9	9	999	9	9	9	9	3	
1	IN] 7916.8	ATION A 7914.0	NGLE : P	35 DEG 1	CONCA	VE UP 9999	288	30	999	999	9	9	999	9	9	9	9	3	
1	IN] 7920.8	ATION A 7918.0	NGLE 2	40 DEG 1	CONVE .0	X UP 9999	250	5	340	45	9	-	999	9	9	2	2	4	
1	SLF 7921.9	S COVER 7919.0	MOST 2	OF PL	ANE .0	9999	250	10	340	40	9	_	999	9	9	2	2	4	
1	7942.1	7939.0	2	1	.0	9999	295	10	25	25	9	-	999	9	9	2	2	4	
1	7948.3	7945.5	2	1	.0	9999	999	0	999	57	9	-	999	9	9	2	2	4	
1	7949.7	7946.5	3	1	.0	9999	58	5	310	50	9	9	999	9	9	2	2	7	
2	RE# 4873.0	LLY AT 4863.0	CONTA 3	CT BET 6	WEEN SS 4.0	AND MU 9999	JDST 999	99	999	999	9	9	999	9	9	9	9	7	
2	4877.0	4867.0	3	6	2.2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
2	4917.4	4906.5	1	1	. 3	0.5	999	80	999	999	9	9	С	С		2	5	3	
	E	BOTTERM	AT SE	D FEAT	WITH B	LK ORGA	A MAT'L	AND PA	ATCHES C	F CALC.(FRAC?)N	O USABL	E MUL	LISHOT I	JATA				

- A 2 4 -

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
2	4922.0	4911.0	3	3	2.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
2	4925.0	4914.0	3	3	1.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
2	4948.5	4935.0	3	3	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
2	5566.6	5568.0	7	1	.2	2.0	999	40	999	999	9	9	С	С		2	2	2	
2	5567.0	5568.5	1	1	.6	10.2	999	85	999	999	9	9	QC	Р	S	2	3	2	\mathbf{TF}
2	5567.6	5569.0	7	FRAC	.1	99999 99999	999	30 30	999	999	9	9	Q	Ρ	S	2	2	2	
2	11Y) 5568.0	5569.5	1 1	1	4.0	10.0	999	90	999	999	9	9	QC	Р	S	7	7	2	TS
2	5701.0	EN FRAC, 5791.0	2 SECTI	LON OF	CORE 15	9999 9999	N-A NUR 999	45 45	999	999	, WIDTH 1 9	STIMATI -	5D 999	9	9	2	2	4	
2	5705.0	5795.0	3	1	.0	9999	999	10	999	999	9	9	999	9	9	9	9	7	
2	5705.3	5795.5	2		10 FRF	9999	999	30	999	999	9	-	999	9	9	2	2	4	
2	5705.4	5795.6	LNG PA		.3	AC STR	999	5705.4 80	4 999	999	9	9	С	С		1	2	3	
2	5708.0	5798.0	հրրբր 3	10 SI 8	1CK BEA 4.0	9999	999 999	99	999	999	9	9	999	9	9	9	9	7	
2	5717.0	5708.0	3	6	1.0	9999	999	9 9	999	999	9	9	999	9	9	9	9	7	
2	5718.2	5709.0	1	3	1.4	0.6	999	90	999	999	9	9	с	С		1	1	3	
2	5721.2	5712.0	1	1	.3	0.6	999	80	999	999	9	9	С	С		3	2	3	
2	5741.5	5732.5	1	1	.5	1.0	999	90	999	999	9	9	С	Р		3	4	4	
2	5743.3	5734.5	1	1	3.5	7.0	999	90	999	999	9	9	QC	P	S	5	2	3	\mathbf{FT}
2	STR1. 5748.4	5739.5	3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5) DEG (a SOFT S	9999 9999	999	99	999	999	HERE, (9	9 9	999	9 9	9 9	9	9	7	
2	5748.5	5739.6	6	1	.3	9999	999	50	999	999	9	+	999	9	9	2	2	7	
2	РОЦ. 5750.4	5741.5		$\frac{1}{1}$	VERY F	LANAR	999	90	999	999	9	9	С	Р	S	1	1	3	
2	MUL 5756.0	TISTRANI 5747.0	DED, S 3	SOME OU 8	JT OF CC 1.6	0RE,PAR 9999	т-сомр 999	FILL-: 99	SOME SUBI 999	HEDRAL FI 999	111 IN 9	90GS 9	999	9	9	9	9	7	
2	5761.5	5752.5	1	1	3.5	8.0	300P	90	999P	999P	9	9	QC	Р	S	1	1	3	\mathbf{FT}
2	STR: 5765.6	IKE FROM 5756.5	1 PALE 3	EOMAG V 9	VIDTH FF 11.4	80M MAD 9999	SEN 999	99	999	999	9	9	999	9	9	9	9	7	
2	5775.9	5767.0	1	1	.8	1.0	999	90	999	999	9	9	с	С		1	1	3	
2	5777.3	5768.5	3	8	2.2	9999	999	99	999	999	9	9	999	9	9	9	9	7	
2	5779.6	5770.5	1	1	2.7	2.0	999	90	999	999	9	9	С	Ρ	S	1	1	3	
2	τυ 5793.6	GGY FILI 5784.5	」WID1 1	TH FROM	4 MADSEN 2.1	1.4	999	85	999	999	9	9	C	P	S	2	4	3	
2	MUL 5798.2	r1-STRAN 5799.0	NDED, 3	OFFSE 15	r ACROSS 7.5	S MUDST 9999	PARTIN	NGS, VÚ(99	ЗСҮ ГІЦЦ- 999	-widih Fe 999	KOM MADA 9	SEN,MINO 9	999 999	знеркат 9	9	9	9	7	

-A25-

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
2	5806.4	5796.5	1	1	.8	0.2	999	90	999	999	9	9	с	C		1	1	6	
2	5807.7	5797.5	3	10	6.3	9999	999	99	999	999	9	9	999	9	9	9	9	7	
2	5814.1	5803.0	1		.5	0.4	999	90	999	999	9	9	С	Р		1	1	3	
2	5817.8	5807.0			.4	0.2	999	90	999	999	9	9	С	С		3	3	3	
2	5825.0	5814.0	3	5 5	.4	9999	999	99	999	999	9	9	999	9	9	9	9	7	
2	5826.2 MULTI	5815.0	ן אדר ידר	1 D TER	2.7	1.5	999 100 00 01	85 ICCV P	999	999	9	9	С	Р	S	1	6	3	
2	5832.9	5823.0	1		.4 .7 סאר שיי		999 999	90 90	999 999	999	9 NUMEDO	9	С	С		6	1	3	
2	5849.6	5839.5	2	1	.0	9999	999	25	999	999	9	~	999	9	9	2	2	4	
2	45 DF 5850.3	5840.5	BETWE	SEN DOV 1	NDIP AN .0	9999	999 999	15	999	999	9	~	999	9	9	2	2	4	
2	VERY 5850.8	5841.0	SLKS 3	2 OMUDC	.0	9999	999	15	999	999	9	9	999	9	9	2	2	7	
2	5852.5	5842.5			.4	0.2	999	90	999	999	9	9	С	С		3	1	0	
2	5853.0	5843.0	3	6 6	3.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
2	5858.4	5848.5	3	4	.1	9999	999	99	999	999	9	9	999	9	9	9	9	7	
2	5858.8	5849.0	1	1	.8	0.2	999	90	999	999	9	9	С	С		3	3	0	
2	5864.8	5855.0	3	8	.7	9999	999	99	999	999	9	9	999	9	9	9	9	7	
2	6401.9	6398.0	3	13	6.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
2	6427.3 TWO	6423.5 STRANDS	1 S OFFS	1 SET AT	.7 CARB. 1	0.5 GAM	999	90	999	999	9	9	С	С		3	3	3	
2	6439.8	6436.0	7	1	.0	0.2	999	5	999	999	9	9	С	С		2	2	3	
2	6461.6 SLKS	6457.5 S DOWNDI	2 [P	1	.0	9999	999	30	999	999	9	-	999	9	9	2	2	4	
2	6465.2 SI.KS	6461.0 S DOWNDI	2 [P- CC	1 VER MO	0. נידר דיצר	9999 91.ane	999	45	999	999	9		999	9	9	2	2	4	
2	6496.3	6490.0	3	3	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
2	6496.4	6490.5	3 DLANF	1	.0	9999	348	40	258	258	9	9	999	9	9	9	9	7	
2	6496.5	6490.6		1	.0	9999	358	40	88	88	9	9	999	9	9	9	9	7	
2	6523.5 OPEN	6516.0	2 FILL	1 SEEN (.3 NT VINC	9999 THINSE	75 מידיד הא	50	165	165	9	+	С	Р		5	5	4	Т
2	6541.2 BOT	6535.0	1 1		.9 TH ARINI	0.5	275 LAMS	90	999	999	9	9	С	С		5	3	3	
2	6559.5 OR TR	6553.5	3 3 3 DATA		.0	9999 E BECAU	290 ISE OF 1	20 UNSPEC	200 IFIED BRI	220 CAK	9	9	999	9	9	2	2	7	
2	6560.0	6564.0	3 גיייער ו		.0	9999 9950	360	30	90 1911	90 EAK	9	9	999	9	9	2	2	7	
2	7081.0	7069.0	3	1	.8	9999	999	70	999	999	9	9	999	9	9	2	2	7	

-A26-

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE A	DIP ZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
2	7122.2	7114.0	1	1	4.0	10.0	270P	80	999P	999P	9	9	Q		S	2	3	3	 FTS
2	MICI 7170.4 MORI	ROSCOPIC 7162.0 E PLANA	C QTZ 3 R FRAC	NUCLEA	ATED ON	SS GRA 9999	.INS,OPI 999	EN-WIDTH 99	999 ST.,	RUBBLIZE 999	D CORE, 9	WEAK P 9	ALEOMA 999	.G 9	9	2	2	7	
2	7181.1	7173.0			1.7	1.0	290P	90	999P	999P	9	9	QC	Ρ	S	3	5	3	\mathbf{TF}
2	7182.8	7175.0	B	1	.2	9999	999	90	999	999	9	9	999	9	9	9	9	6	
2	7188.5	7180.5	3	5	1.8	9999	999	99	999	999	9	9	999	9	9	9	9	7	
2	7193.0	7185.0	3	4	.3	9999	999	99	999	999	9	9	999	9	9	9	9	7	
2	7217.3	7208.5			.4	0.1	999	90	999	999	9	9	С	С		5	5	3	Т
2	7218.6	7209.5	1	1	.7	0.5	999	90	999	999	9	9	С	С		2	5	3	Т
2	7243.7	7233.5	В	1	. 2	9999	999	90	999	999	9	9	999	9	9	9	9	7	
2	7256.2	7246.0	P DNC TN	2	.2	9999 55 DE	999 	99	999	999	9	9	999	9	9	9	9	3	
2	7256.3	7246.5					999	30	999	999	9	9	С	С		3	3	3	
2	7257.0	7247.0		I I	.0	9999	999	99	999	999	9	9	999	9	9	9	9	4	
2	7279.0	7269.0	21H 1	1	.5	0.5	999	90	999	999	9	9	С	С		2	3	4	
2	(aBO) 7279.5	7269.5	B B	JAMS WI 1	LDER AND	9999	PREQUER 999	90	999	999	9	9	999	9	9	9	9	0	
2	7293.8	7284.0	B	1	1.0	9999	999	90	999	999	9	9	999	9	9	9	9	7	
2	7315.2	7305.0	E LONG		.4	0.1	999	90	999	999	9	9	С	С		1	1	3	
2	7316.0	7306.0	B B	LAL ON 1 M VOIAG	.4	9999	999	90	999	999	9	9	999	9	9	9	9	6	
2	7316.6	7306.5	7			9999	999	30	999	999	9	9	QC	Ρ	S	2	2	0	
2	7327.1	7317.0	2	1 1	.0	9999	999	30	999	999	9	-	999	9	9	2	2	4	
2	7327.7	7317.5	2	1	.0	9999	999	20	999	999	9	-	999	9	9	9	9	4	
2	7330.7	7320.5	B	1 1	.3	9999	999	90	999	999	9	9	999	9	9	9	9	3	
2	7332.8	7323.0	В	1	.2	9999	999	90	999	999	9	9	999	9	9	9	9	3	
2	7339.6	7329.5	В	1	.1	9999	999	99	999	999	9	9	999	9	9	9	9	3	
2	7348.5	7338.5	21H 1	1	.5	0.2	999	90	999	999	9	9	С	С		1	1	3	т
2	SEE 7355.3	N ONLY 1 7345.5	IN SLA 2	AB FACE 1	.1	9999	999	30	999	999	9	-	999	9	9	2	2	4	
2	7368.4	7358.5	1	1	.7	0.1	999	90	999	999	9	9	С	С		6	3	3	
2	10P 7838.6	ГЕКМ АТ 7831.5	CONTA 2	I I	.0	MUDSI 9999	SHARDS 20	5	290	300	9	-	999	9	9	2	2	4	
2	7838.9	7832.0	2	1	.0	9999	20	5	290	285	9	-	999	9	9	2	2	4	

-A27-

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
2	7841.2 OPE	7834.0	2 PATCH	1 Y FILL	.0 GENERAI	9999 LY ROU	999 999	 5 VE	999	10	9	_	Q	P	S	5	2	4	
2	7841.8	7835.0	2	1	.0	9999	999	0	999	82	9	-	999	9	9	2	2	4	
2	7842.8	7836.0	2	1	.0	9999	999	0	999	275	9	-	999	9	9	2	2	4	
2	7843.2	7836.5	в	1	.5	9999	262	90	999	999	9	9	999	9	9	3	3	4	
2	7843.9	7837.0	2 2	1 V FTLL	.1	9999	185	20	275	275	9	-	Q	Р	S	2	2	4	FS
2	7845.1	7838.0	2	1	.0	9999	10	10	280	280	9	-	999	9	9	2	2	4	
2	7850.7	7844.0	2	1	.0	9999	325	5	55	275	9	-	999	9	9	2	2	4	
2	7852.2	7845.0	2	1	.0	9999	999	0	999	85	9	-	999	9	9	2	2	4	
2	7852.4	7845.5	2	1	.0	9999	285	15	15	295	9	-	999	9	9	2	2	4	
2	7869.8	7863.0	P	1	6.8	9999	325	90	999 N (TD) (999	9	9	999	9	9	9	9	3	
2	7877.2	7870.0	P ANGLES	2 2 5 80 DI	ARE PAR .4 EG -CONV	ALLEL 99999 YEX HP.	323	90 N OPP	999 SITE STI	999 955	9	9	999 999	9 9	9	9	9	3	
2	7879.5	7872.5	P	1 80DFC		9999 חדת ש	318	90	999	999	9	9	999	9	9	9	9	3	
2	7880.1	7873.0	P	1	.1	9999	323	90	999	999	9	9	999	9	9	9	9	3	
2	7880.5	7873.5	P	, 1	.7	9999	322	90	999	999	9	9	999	9	9	9	9	3	
2	7882.2	7875.0		80 DE0	1.6	99999	327	90	999	999	9	9	999	9	9	9	9	3	
2	7884.0	7877.0	P	: 1 80DEC	.3	9999	147	90	999	999	9	9	999	9	9	9	9	3	
2	7885.3	7878.0	P		. 2	9999	321	90	999	999	9	9	999	9	9	9	9	3	
2	7885.7	7878.5	P		. 2	9999	321	90	999	999	9	9	999	9	9	9	9	3	
2	7886.6	7879.5	P		.1	9999	326	90	999	999	9	9	999	9	9	9	9	3	
2	7888.6	7881.5	P		.2	9999	325	90	999	999	9	9	999	9	9	9	9	3	
2	7889.0	7882.0	P	1 80DFC	.1	9999	320	90	999	999	9	9	999	9	9	9	9	3	
2	7889.3	7882.5	P		.1	9999	335	90	999	999	9	9	999	9	9	9	9	3	
2	7891.2	7884.0	P	1 80DEG	2.3	9999	325	90	999	999	9	9	999	9	9	9	9	3	
2	7891.2	7884.0	В	1	.2	9999	264	90	999	999	9	9	999	9	9	9	9	3	
2	7891.2	7884.0	в	1	. 4	9999	2 7 4	90	999	999	9	9	999	9	9	9	9	3	
2	7893.8	7887.0	Б	1	.3	9999	253	90	999	999	9	9	999	9	9	9	9	3	
2	7895.1	7888.0	в	1	.3	9999	283	90	999	999	9	9	999	9	9	9	9	3	
2	7895.5 IN	7888.5 IATION	P ANGLE	1 55DEG·	.2 - CONVEX	9999 UP	328	90	999	999	9	9	999	9	9	9	9	3	

NO	DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
2	7895.8	7889.0	P	1 55DFG-	.1	9999 11D	333	90	999	999	9	9	999	9	9	9	9	3	
2	7896.2	7889.2	2	1	.0	9999	5	10	275	275	9	-	999	9	9	2	2	4	
2	7896.4	7889.5	2	1	.0	9999	295	10	25	275	9	-	999	9	9	2	2	4	
2	7897.9	7891.0	2	1	.0	9999	999	5	999	999	9	-	999	9	9	2	2	4	
2	7898.1	7891.2	2	1	.0	9999	999	15	9 99	999	9	-	999	9	9	2	2	4	
2	7903.2	7896.0	2	1	.0	9999	345	10	75	75	9	-	999	9	9	2	2	4	
2	7903.4	7896.5	P	1	.9	9999	343	90	999	999	9	9	999	9	9	9	9	3	
2	7903.7	7896.7	P	65DEG	.1	9999	358	9 0	99 9	999	9	9	999	9	9	9	9	3	
2	7903.9	7897.0	P	65DEG	.1	99999	3	90	999	999	9	9	999	9	9	9	9	3	
2	7904.2	7897.2	P	65DEG	CONSTA	9999 9999	3	90	99 9	999	9	9	999	9	9	9	9	3	
2	8101.4	8094.5	ANGLE 6	65DEG	.0	9999 9999	999	0	999	10	9	+	999	9	9	2	2	7	
2	OF 8112.6	RIENTATI 8104.5	ON DA 1	TA VAR 1	IES 20- 2.7	25 DEG 2.0	. ON A 85	STRAIC 90	GHT SCRIE 999	BE,POLISE 999	HED 9	9	QC	С		3	7	3	TF
2	8118.6	8110.5	2	1	.0	9999	295	20	25	50	9	-	999	9	9	2	2	4	
2	8121.6	8113.5	2	1	.0	9999	290	15	20	50	9	-	999	9	9	2	2	4	
2	VEF 8122.8	8114.5	SLKS	1	.0	9999	270	30	360	360	9	9	999	9	9	2	2	7	
2	8122.9	8115.0	3	1	.0	9999	999	0	999	60	9	9	999	9	9	2	2	7	
2	8123.1	8115.5	3	1	.0	9999	80	15	350	55	9	9	999	9	9	2	2	7	
2	8123.2	8115.6	3	1	.0	9999	10	10	280	60	9	9	999	9	9	2	2	7	
2	8123.3	8115.7	3	1	.0	9999	80	5	350	360	9	9	999	9	9	9	9	7	
2	8123.3	8115.7	3	1	.0	9999	310	30	40	70	9	9	999	9	9	9	9	7	
2	8123.3	8115.8	S	3	.2	4.0	330	90	999	999	9	9	HQC	Р	S	3	3	7	TFS
2	8123.9	8116.0	6	UDEG S	OME FRA .3	9999	340	1PLETEI 50		60	9	+	999	9	9	2	2	0	
2	VERY 8124.2	2 PLANAR 8116.5	, CRO 1	SSCUTS 1	BEDDIN	G,TYPE 10.0	QUESTI 345	IONABLE 90	E,PLANE] 999	S POLISH	HED AND 9	BLACK 9	HQC	Р	S	2	3	0	TXS
2	SKIN 8124.9	4S EDGE 8117.0	OF CO 3	RE, OP 1	EN FRAC .0	-WIDTH 9999	ESTIM 90	ATED 12	360	60	9	9	999	9	9	2	2	7	
3	THIS 4887.1	5 FRAC A 4887.0	LSO H P	AS SLI 2	CKS ORI .3	ENTED 9999	358 277	90	999	999	9	9	999	9	9	9	9	9	
3	INIA 4903.7	ATION AN 4903.5	IGLE 6 1	5DEG C 1	ONCAVE	UP 0.2	140	90	999	999	9	9	с	с		5	3	0	
3	FRAC 4904.0	C IS ONL 4904.0	Y VIS B	IBLE O	N ONE S	IDE OF 9999	CORE - 140	-ONLY . 99	.5"INTO (999	ORE-STRI 999	IKE QUES 9	TIONABI 9	ЪЕ 999	9	9	9	9	0	
٦	SCR]	IBELINE	FRAC	PARALL	EL TO E	XT. FR	AC ABO	99 99	999	999	9	q	999	9	q	9	9	7	
-			-		2.0			~ ~			-	-		_	<u> </u>	_	_	1	

-A29-

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
3	5690.8	5697.0	P	1	.1	9999	105	99	15	999	9	9	999	9	9	9	9	3	
3	5692.1	5698.0	P	SUDEG	CONSTAN	9999	95	99	5	999	9	9	999	9	9	9	9	3	
3	5692.3	5698.5	P	60DEG	CONSTAN	9999	85	99	175	999	9	9	999	9	9	9	9	3	
3	5692.6	5699.0	P	70DEG	CONSTAN	9999	105	99	195	999	9	9	999	9	9	9	9	3	
3	1N 5693.4	5699.5	ANGLE 3	70DEG 1	CONSTAN	9999	65	35	155	155	9	9	999	9	9	9	9	7	
3	5693.4	5699.5	3	1	. 2	9999	315	40	225	225	9	9	999	9	9	9	9	7	
3	5693.7	5700.0	3	1	. 2	9999	35	45	125	135	9	9	999	9	9	9	9	7	
3	5693.7	5700.0	3	1	. 2	9999	45	50	315	315	9	9	999	9	9	9	9	7	
3	5693.9	5700.5	3	1	.0	9999	55	50	145	135	9	9	999	9	9	9	9	7	
3	5693.9	5700.5	3	1	.0	9999	345	20	255	255	9	9	999	9	9	9	9	7	
3	5693.9	5700.5	3	3	. 0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
3	5694.7	5701.0	3	1	.0	9999	10	45	280	280	9	9	999	9	9	9	9	7	
3	5695.0	5701.5	3	6	2.6	9999	999	99	999	999	9	9	999	9	9	9	9	7	
3	5698.0	5704.0	3	1	.0	9999	999	60	999	999	9	9	999	9	9	9	9	7	
3	D 5699.0	5705.0	SLKS 3	6	.5	9999	999	99	999	999	9	9	999	9	9	9	9	7	
3	5699.5	5705.5	3	1	.0	9999	5	20	275	275	9	9	999	9	9	9	9	7	
3	5699.7	5705.7	3	1	.0	9999	285	25	15	15	9	9	999	9	9	9	9	7	
3	5699.9	5706.0	3	1	.0	9999	55	25	145	175	9	9	999	9	9	9	9	7	
3	5700.1	5706.0	3	1	.0	9999	35	30	305	305	9	9	999	9	9	9	9	7	
3	5700.1	5706.0	3	1	.0	9999	285	50	15	15	9	9	999	9	9	9	9	7	
3	5700.1	5706.0	3	1	. 0	9999	55	60	325	345	9	9	999	9	9	9	9	7	
3	5700.1	5706.0	3	3	. 9	9999	999	99	999	999	9	9	999	9	9	9	9	7	
3	5701.3	5707.5	3	1	.0	9999	75	45	165	165	9	9	999	9	9	9	9	7	
3	5701.4	5707.6	3	1	.0	9999	55	50	145	145	9	9	999	9	9	9	9	7	
3	5702.5	5708.5	3	1	.0	9999	25	30	295	295	9	9	999	9	9	9	9	7	
3	5702.5	5708.5	3	1	.0	9999	355	45	265	265	9	9	999	9	9	9	9	7	
3	5702.8	5709.0	3	1	.0	9999	75	60	345	345	9	9	999	9	9	9	9	7	
3	5702.8	5709.0	3	1	.0	9999	999	0	999	999	9	9	999	9	9	9	9	7	

-A30-

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
3	5702.8	5709.0	3	1	.0	9999	45	70	135	135	9	9	999	9	9	9	9	7	
3	5702.8	5709.0	3	1	.0	9999	295	40	205	205	9	9	999	9	9	9	9	7	
3	5702.8	5709.0	3	1	.0	9999	15	45	285	285	9	9	999	9	9	9	9	7	
3	5702.8	5709.0	3	1	.0	9999	5	45	95	95	9	9	999	9	9	9	9	7	
3	5702.9	5709.1	3	1	.0	9999	315	40	225	225	9	9	999	9	9	9	9	7	
3	5702.9	5709.1	3	1	.0	9999	55	30	325	325	9	9	999	9	9	9	9	7	
3	5703.1	5709.2	3	1	.0	9999	45	35	135	135	9	9	999	9	9	9	9	7	
3	5703.4	5709.5	3	1	.0	9999	325	25	235	235	9	9	999	9	9	9	9	7	
3	5703.7	5710.0	3	1	.0	9999	85	35	355	355	9	9	999	9	9	9	9	7	
3	5706.5	5712.5	3	1	.0	9999	295	50	25	25	9	9	999	9	9	9	9	7	
3	5707.3	5713.5	1	2	3.0	1.0	80	90	999	999	9	9	с	С		4	1	4	TS
3	ТWO 5712.6	PARALLE 5718.5	L FRA 1	.CS 0.1 1	L'+ APAF .4	RT,STRA 1.0	NDED 275	90	999	999	9	9	С	С		3	2	4	
3	FRA0 5713.4	C JUST S 5719.5	KIMME 1	D CORE 1	E .6	0.5	290	90	999	999	9	9	с	С		3	3	4	
3	TOP 5714.7	AND BOT 5721.0	CLOS P	E TO] 1	IRREGULA	AR MUDS 9999	T LAMS, 230	, TWO M2 99	AIN STRAN 999	1DS 999	9	9	999	9	9	9	9	б	
3	QUES 5714.9	STIONABL 5721.5	E ORI P	ENT BE 1	ECAUSE (.1	F TIMI 9999	NG OF (230	CONNEC! 99	FION, INIA 999	ATION AND 999	GLE OBSC 9	CURE 9	999	9	9	9	9	6	
3	QUES 5714.9	STIONABL 5721.5	E ORI 1	ENT BE	ECAUSE (OF TIMI 0.2	NG OF (999	CONNECT 90	FION, IN 999	ATION AN 999	IGLE OBS 9	SCURE 9	с	С		7	3	б	
٦	ONLY 5728 5	(SEEN O	N ONE	SIDE	OF CORE	E-CAN'I	TRACE	IN CRO	DSS-SECT	ION, TOPTI	ERM IN C 9	.2'SAMI	PLE OU 999	JT 9	9	2	2	4	
3	VERY	COARSE	รีร	1		9999	80	30	350	40	9	9	999	9	9	9	9	7	
3	5731 5	5738 0	3	1		9999	40	45	310	310	9	9	999	9	9	9	9	7	
3	5732.5	5739.0	2	1		9999	999	30	999	999	9	_	999	9	9	2	2	4	
3	5739 3	5745 5	2	1		9999	15	45	285	285	9	9	999	9	9	9	9	7	
3	5739 3	5745 5	3	1	.0	9999	95	30	185	185	q	9	999	9	9	9	9	7	
3	5739 A	5745 6	3	1	.0	0000	35	30	305	305	Ŷ	q	999	9	9	9	g	7	
3	5740 4	5747 0	2	1	.0	0000	325	10	55	55	q	-	999	9	9	2	2	4	
2	5740.4	5747.0	2	1	.0	0000	105	±0	000	000	9	٩	999	9	9	q	9	4	
2	5740.0 SIL	FY SS W/	ABUND		LAMS,	INIATI	ON ANG	LE 60 1	DEG-CONS	TANT DIP	9	_	000	9	9	2	2	4	
2	MUDS	ST PARTI	NG BE		FINESS	5 & SII	TST	10	170	170	9	Q	999	ے م	9	9	9	7	
<i>э</i>	5712 1	5740 0	<i>э</i>	1	.0	0000	70	20	240	310	ر م	9	999	ر ۹	9	ý Q	9	7	
5	J143.T	J149.U	2	1	.0	フラララ	70	20	040	240	2	<i>,</i>	117	2	~	-	-		

-A31-

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
3	5743.4	5749.5	3	1	.0	9999	80	40	350	350	9	9	999	9	9	9	9	7	
3	5743.4	5749.5	3	1	.0	9999	330	30	60	60	9	9	999	9	9	9	9	7	
3	5745.5	5751.5	3	1	.0	9999	70	35	340	340	9	9	999	9	9	9	9	7	
3	5745.9	5752.0	3	1	.0	9999	80	45	350	350	9	9	999	9	9	9	9	7	
3	5747.0	5753.0	3	6	1.7	9999	999	99	999	999	9	9	999	9	9	9	9	7	
3	5749.4	5755.5		1	. 8	0.5	280	90	999	999	9	9	С	С		1	3	4	
3	5750.6	5756.5	3	1	.0	9999	100	40	10	10	9	9	999	9	9	9	9	7	
3	5752.9	5759.0	P		.1	9999	120	60	999	999	9	9	999	9	9	9	9	4	
3	5758.0	5764.0				9999 9999	300	65	999	999	9	9	999	9	9	9	9	3	
3	5760.3	5766.5	1	1	- CONSTA .5	0.5	80	90	999	999	9	9	С	С		1	3	6	
3	5760.5	5766.5	3	1	.0	9999	20	60	290	290	9	9	999	9	9	9	9	7	
3	5760.8	5767.0	3	1	.0	9999	125	60	215	215	9	9	999	9	9	9	9	7	
3	5762.6	5768.5	3	1	.0	9999	85	65	355	355	9	9	999	9	9	9	9	7	
3	5764.2	5770.0	3	1	.0	9999	105	40	195	195	9	9	999	9	9	9	9	7	
3	5766.6	5774.5	P	1	.0	9999	999	45	215	999	9	9	999	9	9	9	9	6	
3	5766.7	5774.6	P	1 1	ION ANGI	9999 9999	999	50	195	999	9	9	999	9	9	9	9	6	
3	5767.2	5773.0		$\frac{1N1AT}{2}$	ION ANGI		90	90 90	999	999	9	9	С	С		3	2	6	
3	MUDI 5769.5	5775.5	1 1	1 PARA	.4	0.3	280	90	999	999	9 9	9	С	С		1	1	3	Т
3	GA 5770.0	5776.0	3	1	.0	9999	350	50	260	260	9	9	999	9	9	9	9	7	
3	5770.0	5776.0	3	1	.0	9999	340	60	70	70	9	9	999	9	9	9	9	7	
3	5770.0	5776.0	3	7	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
3	5773.0	5779.0	3	1	.0	9999	20	25	290	290	9	9	999	9	9	9	9	7	
3	5773.0	5779.0	3	3	1.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
3	5774.0	5780.0	3	1	.0	9999	70	35	340	330	9	9	999	9	9	9	9	7	
3	5778.2	5782.5	2	1	.0	9999	270	15	0	0	9	-	999	9	9	2	2	4	
3	5780.0	5784.0	LKS 1	1	.8	1.0	295	90	999	999	9	9	С	С		7	2	3	Т
3	5783.1	5787.0	NG IN P	вох,м. 2	1CROPROE 2	9999 9999	110	90	999	999	9	9	999	9	9	9	9	4	
3	ЕХА 5783.3 @ТО	5787.5 PTERM 0	1 .7' SA	AMPLE (OWN, IN .3 OUT, FRAC	0.2 SPLIT	290 THIN	90 90 FILM OF	999 F CALCIT	999 E ON EXPO	9 DSED PLA	9 ANE	с	с		7	1	4	

-A32-

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
3	5784.2	5788.0	3	1	.0	9999	305	60	215	215	9	9	999	9	9	9	9	7	
3	5785.0	5789.0	3	1	.0	9999	305	40	215	215	9	9	999	9	9	9	9	7	
3	5785.0	5789.0	3	4	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
3	5786.2	5790.0	3	1	.0	9999	355	30	265	265	9	9	999	9	9	9	9	7	
3	5786.7	5790.5	3	1	.0	9999	105	60	195	195	9	9	999	9	9	9	9	7	
3	5788.5	5792.5	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
3	5788.8	5793.0	s	3	.2	0.2	280	90	999	999	9	9	с	С		7	3	6	
3	MUDI 5789.7	DY SILTS 5793.5	ST, TC 1	OPTERM 1	MISSING .4	6,FILL 0.2	PARTIAI 90	ON E2 90	XPOSED PI 999	LANE 999	9	9	С	С		7	7	6	
3	MUDI 5791.0	DY SILTS 5795.0	ST, FI 3	LL PAF 15	TIAL ON 4.0	1 EXPOS 9999	ED PLAN 999	NE,EXA(99	CT WIDTH 999	UNKNOWN, 999	TERMS M 9	IISSING 9	999	9	9	9	9	7	
3	5795.5	5799.5	3	1	.0	9999	45	50	315	315	9	9	с	Р		9	9	7	
3	CALC 5795.5	CITE FIL 5799.5	L IN 3	TROUGH 3	IS .5	9999	999	99	999	999	9	9	999	9	9	9	9	7	
3	5796.0	5800.0	3	1	.0	9999	35	50	305	315	9	9	999	9	9	9	9	7	
3	5796.5	5800.5	3	1	.0	9999	5	40	275	275	9	9	999	9	9	9	9	7	
3	5800.1	5804.0	1	1	.5	0.2	999	90	999	999	9	9	С	С		5	5	0	
3	INTI 5800.8	ERLAMINA 5804.5	TED S	S/ MUI 1	ST/SILI .0	99999, NULTI	STRANDE 999	ED,NO (40	ORIENT DA 999	ATA,5800. 999	.3-NORMA 9	L INDUC 9	CED FF 999	AC?! 9	9	9	9	7	
3	5802.0	5806.0	3	1	.0	9999	999	30	999	999	9	9	999	9	9	9	9	7	
3	5803.7	5807.5	1	1	.7	0.3	999	90	999	999	9	9	С	С		3	3	5	
3	FILI 5804.4	L PARTIA 5808.5	L ON 3	EXPOSE 1	D PLANE	99999	STRANDE 360	ED,ONE 70	STRAND C 90	UT OF CC 100	DRE @TOP 9	, 9	999	9	9	9	9	7	
3	5805.0	5809.0	2	1	.0	9999	40	65	310	290	9	-	999	9	9	2	2	4	
3	SFT 5805.3	SED MUD 5809.5	ST SW 3	IRL IN	FINE S	S 9999	10	45	100	100	9	9	999	9	9	9	9	7	
3	5805.8	5810.0	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
3	5806.3	5810.5	3	1	.0	9999	310	50	40	40	9	9	999	9	9	9	9	7	
3	5806.3	5810.5	3	1	.0	9999	60	30	150	150	9	9	999	9	9	9	9	7	
3	5806.3	5810.5	3	1	.0	9999	330	40	240	230	9	9	999	9	9	9	9	7	
3	5806.6	5810.6	3	1	.0	9999	310	30	220	190	9	9	999	9	9	9	9	7	
3	5806.6	5810.6	3	1	.0	9999	50	60	140	160	9	9	999	9	9	9	9	7	
3	5807.3	5811.5	1	1	2.5	0.5	305	90	999	999	9	9	С	С		4	1	3	
3	STRA 5809.5 FRAC	ANDED 5813.5 C JUST S	1 KIMS	1 CORE E	.3 INECHELO	10.0 N AT M	310 UDST CO	90 NTACT,	999 OPEN FRA	999 C-WIDTH	9 ESTIMAT	9 'ED	QC	Ρ	S	2	2	3	

-A33-

I

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH 1	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
3	5810.7	5814.5	3	1	.0	9999	340	30	70	70	9	9	999	9	9	9	9	7	
3	5812.1	5816.0	Р	1	.0	9999	120	55	999	999	9	9	999	9	9	9	9	3	
3	5812.8	5817.0	P	1 1	· IRREGU	9999	120	60	999	999	9	9	999	9	9	9	9	3	
3	5813.8	5818.0	P	50DEG 1	- CONSTA	.NT DIP 9999	130	60	999	999	9	9	999	9	9	9	9	3	
3	5814.2	5818.2	NGLE (P	50DEG 1	· CONCAV	E UP 9999	110	70	999	999	9	9	999	9	9	9	9	3	
3	1N1A 5814.6	5818.5		/ODEG 1	· CONCAV	E UP 9999	120	70	999	999	9	9	999	9	9	9	9	3	
3	5815.1	5819.0		/ODEG 1	- CONCAV	E UP 9999	110	50	999	999	9	9	999	9	9	9	9	3	
3	INIA 5815.7	ATION AN 5819.5	IGLE : 3	50DEG 1	- CONCAV .0	E UP 9999	80	20	350	350	9	9	999	9	9	9	9	7	
3	5815.7	5819.5	3	1	.0	9999	320	60	50	50	9	9	999	9	9	9	9	7	
3	5815.7	5819.5	3	1	.0	9999	310	60	220	220	9	9	999	9	9	9	9	7	
3	5815.7	5819.5	3	1	.0	9999	350	70	80	100	9	9	999	9	9	9	9	7	
3	5815.7	5819.5	3	1	.0	9999	20	50	110	110	9	9	999	9	9	9	9	7	
3	5815.7	5819.5	3	1	.0	9999	330	45	240	190	9	9	999	9	9	9	9	7	
3	5819.3	5823.5	3	1	.0	9999	350	60	80	80	9	9	999	9	9	9	9	7	
3	5819.3	5823.5	3	3	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
3	5820.9	5825.0	1	1	. 8	1.0	290	90	999	999	9	9	С	С		1	4	3	Т
3	5821.7	5825.5	Р	1	.0	9999	120	99	999	999	9	9	999	9	9	9	9	6	
3	5823.5	5827.5	P	1	.0	9999	120	65	999	999	9	9	999	9	9	9	9	6	
3	5825.0	5829.0	P	3	· CONVEX	9999	124	90	999	999	9	9	999	9	9	2	3	3	
3	5845.2	5849.0	3'L(1	JNG, 80	-90DEG	0.1	999 999	90	999	999	NIAT.AN 9	9 9	C C	C C	ΙΡ	7	1	2	
3	5847.2	5851.0	3	SAMPLE 1	.0	9999	999	45	999	999	9	9	999	9	9	9	9	7	
3	5850.1	5853.0	1	1	.3	0.2	999	90	999	999	9	9	С	С		1	1	6	
3	5850.7	5853.5	1 1	1	. 8	1.0	999	90	999	999	9	9	С	С		1	1	5	
3	5851.8	5855.0		2	.1	0.5	999	90	999	999	9	9	С	С		1	1	6	
3	5854.6	5856.5			.4 .4	0.3	999 GED DI 1	80	999	999	9	9	с	С		1	1	б	Т
3	5855.6	5857.5	7 7				999 999	0	999	999	9	9	С	С		3	3	6	
3	5861.0	5861.0	3	4 4	1.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
3	5865.3 ALL	5865.5 PETALS	P PARAI	4 LEL IN	1.0 HIATION	9999 ANGLES	999 35DEG.	90 -CONVE	999 X UP	999	9	9	999	9	9	9	9	3	

WELL NO	CORE DEPTH	LOG DEPTH	FRAC TYPE	# OF FRACS	FRAC HEIGHT	FRAC WIDTH	FRAC STRIKE	DIP ANGLE	DIP AZIMUTH	SLICK BEARING	TYPE MOTION	SLICK EXTENT	FILL TYPE	FILL AMOUNT	CRYSTAL TYPE	TOP TERM	BOT TERM	LITH	LAB ANALYSES
3	6449.3	6449.5	3	1	.0	9999	999	0	999	250	9	9	999	9	9	2	2	7	
3	00E	6459.0		LENT 1	2.3	1.5	280	90	999	999 No om	9	9	QC	C		3	5	4	TF
3	469.6	6470.5	JERE (JRGA L. 1	AMS BECC	омы мон 9999	320	20 20	50	50 NO Q12	9 9	9	999	9	9	3	3	7	
3	6469.7	6470.6	3	3	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
3	6475.0	6476.5	2	1	.0	9999	345	35	75	115	9	-	999	9	9	2	2	4	
3	6499.1	6502.0	3	1	.0	9999	295	30	25	25	9	9	999	9	9	3	3	7	
3	6499.8	6503.0	3	1	.0	9999	25	25	115	115	9	9	999	9	9	9	9	7	
3	1RF 6500.6	REGULAR	PLANI 3	£1	.0	9999	315	15	45	45	9	9	999	9	9	9	9	7	
3	QUI 6879.9	6877.0	3LE OF 3	RIENT 1	.0	9999	60	20	330	330	9	9	999	9	9	9	9	7	
3	6880.0	6877.1	3	1	.0	9999	999	45	999	999	9	9	999	9	9	9	9	7	
3	NO 6881.9	SCRIBE 6879.0	3	1	.0	9999	999	45	999	999	9	9	999	9	9	9	9	7	
3	NO 6881.9	SCRIBE 6879.0	3	1	.0	9999	999	20	999	999	9	9	999	9	9	9	9	7	
3	(d F 6882.4	RIGHT AN 6879.5	IGLE 1 3	ro fra 1	C ABOVE	9999	999	20	999	999	9	9	999	9	9	9	9	7	
3	NO 6884.5	SCRIBE 6881.5	3	2	.0	9999	15	99	105	105	9	9	999	9	9	9	9	7	
3	6884.5	6881.5	3	1	.0	9999	15	99	285	285	9	9	999	9	9	9	9	7	
3	6884.9	6882.0	6	1	.0	9999	335	30	65	65	9	+	С	Р		2	2	7	
3	SCH 6886.0	6883.0	CATINO 3	З, РОЦ 7	ISHED .0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
3	NO 6887.1	SCRIBE 6884.0	1	1	.2	0.2	275	90	999	999	9	9	С	С		5	5	3	
3	TEF 6895.6	MS AT 1 6892.5	IRREGU B	JLAR M 1	UDST LAN .0	4S 9999	999	90	999	999	9	9	999	9	9	9	9	9	
3	6897.4	6894.5	С	4	. 2	0.5	265	90	999	999	9	9	С	С	9	3	3	8	
3	тні 6897.5	ESE ARE 6894.6	COAL 3	CLEAT: 1	S WITH I .0	FILL- 4 9999	SMALL 335	CLEATS 30	245	245	9	9	999	9	9	9	9	7	
3	6908.0	6905.0	3	1	.0	9999	95	50	185	235	9	9	999	9	9	9	9	7	
3	7155.9	7154.0	3	1	.0	9999	15	30	285	275	9	9	999	9	9	9	9	7	
3	7155.9	7154.0	3	1	.0	9999	999	99	999	999	9	9	999	9	9	9	9	7	
3	ואז 7157.5	TERSECTI 7155.5	ING FF 3	RAC ABO	OVE .0	9999	35	15	125	125	9	9	999	9	9	9	9	7	
3	QUE 7157.5	STIONAE 7155.5	BLE SC	CRIBE	.0	9999	55	40	145	145	9	9	999	9	9	9	9	7	
3	QUE 7157.5 QUE	STIONAE 7155.5 STIONAE	BLE SC 3 BLE SC	CRIBE 1 CRIBE	.0	9999	295	20	25	2 5	9	9	999	9	9	9	9	7	

-A35-